Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 1-2 | 49-56
Article title

Badania układów błonowych metodami modelowania molekularnego

Title variants
Molecular modelling studies of membrane systems
Languages of publication
Biological membranes enclose every cell (plasma membrane) and some intracellular organelles (internal membranes). The main structural element of a biological membrane is a liquid-crystalline lipid bilayer. Experimental studies of lipid bilayers are difficult to carry out and to interpret because of their structural disorder and superposition of motions occurring in different time scales. Besides, due to limited spatial and time resolutions, they provide only an averaged behaviour of the molecules in the bilayer. Detailed information about the dynamical structure and time scales of events in the membrane can be obtained using molecular dynamics (MD) simulation methods. Although MD simulation is, in principle, characterized by an atomic resolution and time resolution in the femtosecond time scale in principle, the total simulation time is limited at present to several hundred nanoseconds. So, the method allows observation of the processes up to the 10-7 s time scale. MD simulation studies of hydrated lipid bilayers have shown that at the membrane/water interface there are numerous but short-lived hydrogen (H-) bonds between lipid headgroups and water molecules as well as an extended network of interlipid links via water molecules that are simultaneously H-bonded to two lipid molecules, i.e., so called water bridges. Exchange of H2O by D2O affects the time-averaged properties of the PC bilayer to some extent. When the bilayer is hydrated by D2O it becomes more compact than in the case of H2O. This can be assigned to the more stable H-bonds between PC and D2O than H2O and, particularly, to the more stable network of D2O water bridges compared with the H2O ones. In effect, the self-diffusion coefficient of D2O averaged over all water molecules in the bilayer is almost twice smaller than that of H2O and ∼2.5 times smaller than in pure D2O (∼1.7 in the case of H2O).
Physical description
  • Zakład Biofizyki Obliczeniowej i Bioinformatyki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Anezo C., De Vries A. H., Holte H. D., Tieleman D. P., Marrink S. J., 2003. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 107, 9424-9433.
  • Berkowitz M. L., 2009. Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim. Biophys. Acta 1788, 86-96.
  • Cioni, P., Strambini G. B., 2002. Effect of heavy water on protein flexibility. Biophys. J. 82, 3246-3253.
  • Day C. A., Kenworthy A. K., 2009. Tracking microdomain dynamics in cell membranes. Biochim. Biophys. Acta 1788, 245-253.
  • Ding J., Starling P., East J. M., Lee G., 1994. Binding sites for cholesterol on Ca2+-ATPase studied by using a cholesterol-containing phospholipid. Biochemistry 33, 4974-4979.
  • Edidin M., 2003. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257-83.
  • Egberts E., Marrik S.-J., Berendsen H. J. C., 1994. Molecular dynamics simulation of phospholipid membrane. Eur. Biophys. J. 22, 423-436.
  • Epand R. M., Vogel H. J., 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462, 11-28.
  • Goss R., Lohr M., Latowski D., Grzyb J., Vieler A., Wilhelm C., Strzalka K., 2005. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidationtion. Biochemistry 44, 4028-4036.
  • Leach A. R., 2001. Molecular modelling: Principles and applications. 2nd edition, Pearson Education Ltd, Harlow.
  • Murzyn K., Zhao W., Karttunen M., Kurdziel M., Róg T., 2006. Dynamics of water at membrane surfaces: Effect of headgroup structure. Biointerphases 1, 98-105.
  • Nagle, J. F., 1993. Area/lipid of bilayers from NMR. Biophys. J. 64, 1476-1481.
  • Nagle J. F., Tristram-Nagle S., 2000. Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159-195.
  • Pandit S. A., Scott H. L., 2009. Multiscale simulations of heterogeneous model membranes. Biochim. Biophys. Acta 1788, 136-148.
  • Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A., 1997. Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: Location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J. Phys. Chem. A. 101, 3677-3691.
  • Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A., 1999. Charge-pairing of headgroups in phosphatidylcholine membranes. A molecular dynamics simulation study. Biophys. J. 76, 1228-1240.
  • Pearson H. R., Pascher I., 1979. The molecular structure of lecithin dihydrate. Nature 281, 499-501.
  • Róg T., Murzyn K., Milhaud J., Karttunen M., Pasenkiewicz-Gierula M., 2009. Water isotope effect on the bilayer properties: a molecular dynamics simulation study. J. Phys. Chem. B 113, 2378-2387.
  • Róg T., Murzyn K., Pasenkiewicz-Gierula M., 2002. The dynamics of water at the phospholipid bilayer surface: a molecular dynamics simulation study. Chem. Phys. Lett. 352, 323-327.
  • Seddon J. M., Templer R.H., 1995. Polymorphism of lipid-water systems. [W:] Structure and dynamics of membranes. From cells to vesicles. Lipowsky R., Sackmann E. (red). Elsevier Science, Amsterdam, 97-160.
  • Simons K., Toomre D., 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31-41.
  • Singer S. J., Nicolson G. L., 1972. The fluid mosaic model of the structure of cell membranes. Science 175, 720-731.
  • Sonne J., Jensen M. Ø., Hansen F. Y., Hemmingsen L., Peters G. H., 2007. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. Biophys. J. 92, 4157-4167.
  • Subczynski W. K., Kusumi A., 2003. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231-243.
  • Taylor K. M. P., Roseman M., 1996. Effect of cholesterol on the tight insertion of cytochrome b5 into large unilamellar vesicles. Biochim. Biophys. Acta 1278, 35-40.
  • Van Den Brink-van der Laan E., Killian J. A., de Kruijff B., 2004. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta 1666, 275-288.
  • Woolf, L. A., 1976. Tracer diffusion of tritiated heavy water (DTO) in heavy water (D2O) under pressure. J. Chem. Soc., Faraday Trans. 1, 1267-1273.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.