Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 3-4 | 475-484
Article title

Mechanizmy prowadzące do zróżnicowania genetycznego między populacjami w obrębie gatunku

Title variants
Mechanisms of genetic differentiation among conspecific populations
Languages of publication
The process of genetic differentiation among conspecific populations constitutes the first stage of speciation, and its understanding is crucial for the advance of evolutionary studies. However, the underlying ecological mechanisms controlling gene flow between populations are still poorly known. According to the classical population genetic theory, genetic differentiation among populations results from spatial isolation due to physical barriers to dispersal. In the absence of such barriers in contemporary distribution of a species, genetic differentiation among populations was usually explained by past fragmentation of a species range, e.g. as a result of isolation in different refugia during the Pleistocene glaciations. In many extant species of animals and plants, distinct evolutionary lineages have non-overlapping geographical distributions, and the time of their splitting is often estimated at several million years, suggesting their long-term geographical separation. However, genetic studies on remains of Pleistocene mammals revealed that the correlation between phylogenetic relationships and geographical distribution does not necessarily imply long-term genetic isolation. The distribution of lineages was shown to dynamically change over time due to local extinctions and reinvasions. In some cases, range boundaries between genetically distinct populations were surprisingly stable despite lineage shifts, suggesting that they could have been shaped by ecological barriers that were relatively constant through time. Consistently, recent studies on extant populations of highly mobile animals with wide continuous ranges revealed cryptic genetic structure in the absence of physical barriers to dispersal, which may be shaped by ecological factors. This suggests that ecological speciation may play an important role in the process of formation of new species. Studies on the role of ecological factors in population differentiation have been constrained by limited knowledge of the relationship between phenotype and genotype. However, recent advances in molecular biology opened the possibility of studying genome-wide variability in natural populations, enabling identification of the genetic background of traits influencing fitness. The synthesis of population ecology and population genetics seems to become possible, and it may be expected to lead to a fast advance in evolutionary biology in the nearest future.
Physical description
  • Anderson T. M., Vonholdt B. M., Candille S. I., Musiani M., Greco C. G., Stahler D. R., Smith D. W., Padhukasahasram B., Randi E., Leonard J. A., Bustamante C. D., Ostrander E. A., Tang H., Wayne R. K., Barsh G. S., 2009. Molecular and evolutionary history of melanism in north american gray wolves. Science 323, 1339-1343.
  • Arnegard M. e., Markert J. A., Danley P. D., Stauffer J. R., Ambali A. J., Kocher T. D., 1999. Population structure and colour variation of the cichlid fishes Labeotropheus fuelleborni Ahl. along a recently formed archipelago of rocky habitat patches in southern Lake Malavi. Proc. R. Soc. Lond. B 266, 119-130.
  • Avise J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.
  • Avise J. C., Walker D., Johns G. G., 1998. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. Roy. Soc. Lond. B 265, 1707-1712.
  • Barnes I., Matheus P., Shapiro B., Jensen D., Cooper A., 2002. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267-2270.
  • Bearhop S., Fiedler W., Furness R. W., Votier S. C., Waldron S, Newton J., Bowen G. J., Berthold P., Farnsworth K., 2005. Assortative Mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502-504.
  • Beaumont M. A., Balding D. J., 2004. Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13, 969-980.
  • Berthold P., Helbig A. J., Mohr G., Querner U., 1992. Rapid microevolution of migratory behavior in a wild bird species. Nature 360, 668-670.
  • Bolnick D. I., Svanback R., Fordyce J. A., Yang L. H., Davis J. M., Hulsey C. D., Forister M. L., 2003. The ecology of individuals: incidence and implications of individual specialisation. Am. Nat. 160, 1-28.
  • Carmichael L. E., Nagy J. A., Larter N. C., Strobeck C., 2001. Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol. Ecol. 10, 2787-2798.
  • Carmichael, L. e., Krizan, J., Nagy, J. a., Fuglei, E., Dumond, M., Johnson, D., Veitch, A., Berteaux, D., Strobeck C., 2007. Historical and ecological determinants of genetic structure in arctic canids. Mol. Ecol. 16, 3466-3483.
  • Dalén L., Fuglei E., Hersteinsson P., Kapel C. M. O., Roth J. D., Samelius G., Tannerfeldt M., Angerbjorn A., 2005. Population history and genetic structure of a circumpolar species: the arctic fox. Biol. J. Linn. Soc. 84, 79-89.
  • Danley P. D., Kocher T. D., 2001. Speciation in rapidly diverging systems: lessons from Lake Malavi. Mol. Ecol. 10, 1075-1086.
  • Davis J. M., Stamps J. A., 2004. The effect of natal experience on habitat preferences. Trends Ecol. Evol., 19, 411-416.
  • Doebeli M., Dieckmann U., 2003. Speciation along environmental gradients. Nature 421, 259-264.
  • Ellegren H., Sheldon B. C., 2008. Genetic basis of fitness differences in natural populations. Nature 452, 169-175.
  • Funk W. C., Cannatella D. C., Ryan M. J., 2009. Genetic divergence is more tightly related to call variation than landscape features in the Amazonian frogs Physalaemus petersi and P. freibergi. J. Evol. Biol. 22, 1839-1853.
  • Garant D., Kruuk L. E. B., Wilkin T. A., Mccleery R. H., Sheldon B. C., 2005. Evolution driven by differential dispersal within a wild bird population. Nature 433, 60-65.
  • Geffen E., Anderson M. J., Wayne R. K., 2004. Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol. Ecol. 13, 2481-2490.
  • Geritz, S. A. H., Kisdi É., Meszéna G., Metz J. A. J., 2004. Adaptive dynamics of speciation: Ecological underpinnings. [W:] Adaptive speciation. Dieckmann U., Doebeli M., Metz J. A. J., Tautz D. (red.). Cambridge University Press, 54-75.
  • Hartl D. L., Clark G. C., 1997. Principles of Population Genetics. Third ed. Sinauer Associates, Sunderland, Massachusetts.
  • Helbig A. J., 1991. Inheritance of migratory direction in a bird species - a cross-breeding experiment with SE-migrating and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28, 9-12.
  • Hewitt G. M., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913.
  • Hoelzel A. r., Hey J., Dahlheim M. E., Nicholson C., Burkanov V., Black N., 2007. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 24, 1407-1415.
  • Hofreiter M., Serre D., Rohland N., Rebeder G., Nagel D., Conrad N., Münzel S., Pääbo S., 2004. Lack of phylogeography in European mammals before the last glaciation. Proc. Natl. Acad. Sci. USA 101, 12963-12968.
  • Kocher T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Rev. Genet. 5, 288-298.
  • Kohn M. H., Murphy W. J., Ostrander E. A., Wayne R. K., 2006. Genomics and conservation genetics. Trends Ecol. Evol. 21, 629-637.
  • Leonard J. A., Vilà C., Fox-dobbs K., Koch P. L., Wayne R. K., Van Valkenburgh B., 2007. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Current Biol. 17, 1146-1150.
  • Leonard J. A., Wayne R. K., Cooper A., 2000. Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci. USA 97, 1651-1654.
  • Lewontin R.c., Krakauer J., 1973. Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms. Genetics 74, 175-195.
  • Luikart G., England, P. R., Tallmon, D., Jordan S., Taberlet P., 2003. The power and the promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981-994.
  • Mayr E., 1963. Animal Species and Evolution. Belknap Press, Cambridge, MA.
  • Mckinnon J. S., Seiichi Mori S, Blackman B. K., David L, Kingsley D. M., Jamieson L., Chou J, Schluter D., 2004. Evidence for ecology's role in speciation. Nature 429, 294-298.
  • Miller-butterworth C. M., Jacobs D. S., Harley E. H., 2003. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature 424, 187-191.
  • Mizera F., Meszéna G., 2003. Spatial niche packing, character displacement, and adaptive speciation along an environmental gradient. Evol. Ecol. Res. 5, 363-382.
  • Musiani, M., Leonard, J. A., Cluff, H. D., Gates, C. C., Mariani, S., Paquet, P. C., Vilà, C., Wayne R. K., 2007. Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol. Ecol. 16, 4149-4170.
  • Nielsen R., 2005. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197-218.
  • Nosil P., Harmon L. J., Seehausen O., 2009. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. 24, 145-156.
  • Pilot M., Jędrzejewski W., Branicki W., Sidorovich V. E., Jędrzejewska B., Stachura K., Funk S. M., 2006. Ecological factors influence population genetic structure of European grey wolves. Mol. Ecol. 15, 533-4553.
  • Ratkiewicz M., 2006. Od genetyki do genomiki populacji: nowe perspektywy badań w ekologii i biologii ewolucyjnej. Kosmos 55, 129-136.
  • Rueness E. K., Stenseth C., O'donoghue M. Boutin S., Ellegren H., Jacobsen S., 2003. Ecological and genetic spatial structuring in the Canadian lynx. Nature 425, 69-72.
  • Sacks B. N., Brown S. K., Ernest H. B., 2004. Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol. Ecol. 13, 1265-1275.
  • Sacks B. N., Mitchell B. R., Williams C. R., Ernest H. B., 2005. Coyote movements and social structure along a cryptic population genetic subdivision. Mol. Ecol. 14, 1241-1249.
  • Sacks B. N., Bannasch D. L., Chomel B. B., Ernest H. B., 2008. Coyotes demonstrate how habitat specialization by individuals of a generalist species can diversify populations in a heterogeneous ecoregion. Mol. Biol. Evol. 25, 1384-1394.
  • Schluter D., 2001. Ecology and the origin of species. Trends Ecol. Evol. 16, 372-380.
  • Seehausen O., Terai Y., Magalhaes I. S., Carleton K. L., Mrosso H. D. J., Miyagi R., Van Der Sluijs I., Schneider M. V., Maan M. E., Tachida H., Imai H., Okada N., 2008. Speciation through sensory drive in cichlid fish. Nature 455, 620-626.
  • Slagsvold T., Wiebe K. L., 2007. Learning the ecological niche. Proc. R. Soc. Lond. B 274, 19-23.
  • Spinks P. Q., Shaffer H. B., 2005. Range-wide molecular analysis of the western pond turtle (Emys marmorata): cryptic variation, isolation by distance, and their conservation implications. Mol. Ecol. 14, 2047-2064.
  • Sponer R., Roy M. S., 2002. Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56, 1954-1967.
  • Stamps J. A., Swaisgood R. R., 2007. Someplace like home: Experience, habitat selection and conservation biology. Appl. Anim. Behav. Sci. 102, 392-409.
  • Stenseth N. C., Shabbar A., Chan K.-s., Boutin S., Rueness E. K., Ehrich D., Hurrell J. W. J., Lingjaerde O. C., Jakobsen K. S., 2004. Snow conditions may create an invisible barrier for lynx. Proc. Natl. Acad. Sci. USA 101, 10632-10634.
  • Sugg D. W., Chesser R. K., Dobson F. S., Hoogland J. L., 1996. Population genetics meets behavioral ecology. Trends Ecol. Evol. 11, 338-342.
  • Taberlet P., Fumagalli L., Wust-saucy A. G., Cosson J. F., 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453-464.
  • Van Oppen M. J. H., Turner G. F., Rico C., Robinson R. L., Deutsch J. C., Genner M. J., Hewitt G. M., 1998. Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness from Lake Malawi. Mol. Ecol. 7, 991-1001.
  • Valdiosera C. E., García N., Anderung C., Dalén L., Crégut-bonnoure E., Kahlke R.-d., Stiller M., Brandström M., Thomas M. G., Arsuaga J. L., Götherström A., Barnes I., 2007. Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Mol. Ecol. 16, 5140-5148.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.