Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 58 | 3-4 | 459-474

Article title

Ewolucja eksperymentalna

Authors

Content

Title variants

EN
Experimental evolution

Languages of publication

PL EN

Abstracts

EN
According to a common wisdom, hypotheses concerning Darwinian evolution cannot be effectively tested by means of rigorous experimental method. The conviction is based on a believe, promulgated by Darwin himself, that evolution acts very slowly, and apparent modifications of organisms result from accumulation of infinitesimally small changes over thousands or millions years. If this were true, experimental approach to evolutionary problems would be indeed impractical. The objective of this paper is to falsify this conviction. Already in XIX century it has been shown that adaptations to altered environment can evolve rapidly in microorganisms, and later the same has been shown both in plants and in animals. In XX century artificial selection experiments have been routinely used in plant and animal production sciences and in biomedical research, and provided empirical basis for the theory of population genetics and of natural selection. In the last few decades of XX century various forms of experimental evolution (laboratory natural selection, laboratory culling selection, artificial selection) have become widely and successfully used by evolutionary biologists to test hypotheses concerning e.g., evolution of adaptations, tradeoffs between life-history and other traits, and also alternative models of speciation. The results contributed greatly to development of the paradigm of evolutionary biology, but the results have also shown limitations of the experimental evolution method. The major drawback is low consistency: trajectories of the experimental evolution vary between populations studied, depend on details of experimental conditions, and may change during the course of experiment. Paradoxically, however, the upsetting variation is by itself informative and contributes to understanding of evolutionary processes. Thus, even the weaknesses of experimental evolution encourage to apply the method more extensively.

Keywords

Journal

Year

Volume

58

Issue

3-4

Pages

459-474

Physical description

Dates

published
2009

Contributors

author
  • Instytut Nauk o Środowisku, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska

References

  • Barnett S. A., Dickson R. G., 1984a. Changes among wild house mice (Mus musculus) bred for 10 generations in cold environment, and their evolutionary implications. J. Zool. 203, 163-180.
  • Barnett S. A., Dickson R.G., 1984b. Milk-production and consumption and growth of young of wild mice after 10 generations in a cold environment. J. Physiol. Lond. 346, 409-417.
  • Bennett A. F., Ruben J. A., 1979. Endothermy and activity in vertebrates. Science 206, 649-654.
  • Bennett A. F., Lenski R. E., 1996. Evolutionary adaptation to temperature. V. Adaptive mechanisms and correlated responses in experimental lines of Escherichia coli. Evolution 50, 493-503.
  • Bramble D. M., Lieberman D. E., 2004. Endurance running and the evolution of Homo. Nature 432, 345-352.
  • Dallinger W. H., 1887. The President's Address. J. Royal Microscop. Soc. 185-199.
  • Elena S. F., Lenski R. E., 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457-469.
  • Fry J. D., 2009. Laboratory experiments on speciation. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R (red.) University of California Press, Berkeley, California, 631-656.
  • Futuyma D. J., 2008. Ewolucja. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  • Futuyma D. J., Bennett A. F., 2009. The importance of experimental studies in evolutionary biology. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R. (red.) University of California Press, Berkeley, California, 15-30.
  • Garland T., Jr., Rose M. R., 2009. Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press, Berkeley, California.
  • Gębczyński A. K., Konarzewski M., 2009a. Locomotor activity of mice divergently selected for basal metabolic rate: A test of hypotheses on the evolution of endothermy. J. Evol. Biol. 22, 1212-1220.
  • Gębczyński A. K., Konarzewski, M., 2009b. Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. J. Exp. Biol. 212, 2872-2878.
  • Haas J. W., Jr., 2000. The reverend Dr William Henry Dallinger, F.R.S. (1839-1909). Notes Rec. R. Soc. Lond. 54, 53-65.
  • Harshman L. G., Hoffmann A. A., 2005. Laboratory selection experiments using Drosophila: what do they really tell us? Trends. Ecol. Evol. 15, 32-50.
  • Houle-Leroy P., Garland T., Jr., Swallow J. G., Guderley H., 2003. Artificial selection for high activity favors mighty mini-muscles in house mice. Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 284, R433-R443.
  • Huey R. B., Rosenzweig F., 2009. Laboratory evolution meets Catch 22: balancing simplicity and realism. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R. (red.) University of California Press, Berkeley, California, 671-701.
  • Hurd L. E., Eisenberg R. M. 1975. Divergent selection for geotactic response and evolution of reproductive isolation in sympatric and allopatric populations of houseflies. Am. Nat. 109, 353-358.
  • Kane S. L., Garland, T., Jr., Carter P. A., 2008. Basal metabolic rate of aged mice is affected by random genetic drift but not by selective breeding for high early-age locomotor activity or chronic wheel access. Physiol. Biochem. Zool. 81, 288-300.
  • Kawecki T. J., 2009. Evolutionary ecology of learning: insights from fruit flies. Popul. Ecol. W druku.
  • Konarzewski M., Książek A., Łapo I. B., 2005. Artificial selection on metabolic rates and related traits in rodents. Integr. Comp. Biol. 45, 416-425.
  • Koteja P., Swallow J. G., Carter P. A. Garland T., Jr., 1999. Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets. Physiol. Biochem. Zool. 72, 238-249.
  • Koteja P., Swallow J. G., Carter P. A., Garland T., Jr., 2003. Different effects of intensity and duration of locomotor activity on circadian period (τ). J. Biol. Rhythms 18, 491-501.
  • Koteja P., Baliga-Klimczyk K., Chrząścik K. M., Damulewicz M., Dragosz-Kluska D., Morawska-Płoskonka J., 2009. Laboratory model of adaptive radiation: activity and metabolic rates in bank voles from a multidirectional artificial selection experiment. Comp. Bichem. Physiol. 153A (Suppl. 2), S146.
  • Losos J., Warhut K., Schoener T., 1997. Adaptive differentiation following experimental island colonizing in Anolis lizards. Nature 387, 70-3.
  • Nehrenberg, D. L., Wang S., Hannon R. M., Garland, T., Jr., Pomp D., 2009. QTL underlying voluntary exercise in mice: interactions with the 'mini muscle' locus and sex. J. Heredity. W druku.
  • Overmeer, W. P. J., 1966. Intersterility as a consequence of insecticide selections in Tetranychus urticae Koch (Acari: Tetranychidae). Nature 209, 321.
  • Platt J. R., 1964. Strong inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146, 347-353.
  • Rauser C. L. Mueller L. D., Travisano M., Rose M. R., 2009. Evolution of aging and late life. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R. (red.) University of California Press, Berkeley, California. 551-584.
  • Rezende E. L., Chappell M. A., Gomes F. R., Malisch J. L., Garland T., Jr., 2005. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running. J. Exp. Biol. 208, 2447-2458.
  • Reznick D. N., Ghalambor C. K., 2005. Selection ii nature: experimental manipulations of natuiral populations. Integr. Comp. Biol. 45, 456-462.
  • Rhodes J. S., Gammie S. C., Garland T., Jr., 2005. Neurobiology of mice selected for high voluntary wheel-running activity. Integr. Comp. Biol. 45, 438-455.
  • Rhodes J. S., Kawecki T. J., 2009. Behavior and neurobiology. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R. (red.) University of California Press, Berkeley, California. 263-300.
  • Rice W. R., Salt G. W., 1988. Speciation via disruptive selection on habitat preference: experimental evidence. Am. Nat. 131, 911-917.
  • Rice W. R., Salt G. W., 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution 44, 1140-1152.
  • Rice W. R., Hostert E. E., 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47, 1637-1653.
  • Rose M. R. Passananti H. B., Chippindale A. K., Phelan J. P., Matos M., Teotonio H., Mueller L. D., 2005. The effects of evolution are local: Evidence from experimental evolution in Drosophila. Integr. Comp. Biol. 45, 486-491.
  • Rundle H. D., Chenoweth S. F., Doughty P., Blows M. W., 2005. Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 3, e368.
  • Sadowska E. T., Baliga-Klimczyk K., Chrząścik K. M., Koteja P., 2008. Laboratory model of adaptive radiation: a selection experiment in the bank vole. Physiol. Biochem. Zool. 81, 627-640.
  • Swallow J. G., Carter P. A., Garland T., Jr., 1998. Artificial selection for increased wheel-running behavior in house mice. Behav. Genet. 28, 227-237.
  • Swallow J. G., Koteja P., Carter P. A., Garland T., Jr., 1999. Artificial selection for increased wheel-running activity in house mice results in decreased body mass at maturity. J. Exp. Biol. 202, 2513-2520.
  • Swallow J. G., Koteja P., Carter P. A., Garland T., Jr., 2001. Food consumption and body composition in mice selected for high wheel-running activity. J. Comp. Physiol. B 171, 651-659.
  • Swallow J. G., Hayes J. P., Koteja P., Garland T., Jr., 2009. Selection experiments and experimental evolution of performance and physiology. [W:] Experimental evolution: concepts, methods, and applications of selection experiments. Garland T., Jr., Rose M. R. (red.) University of California Press, Berkeley, California. 301-351.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv58p459kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.