Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 58 | 3-4 | 443-458

Article title

Metody teorii gier ewolucyjnych

Content

Title variants

EN
Methods of evolutionary game theory

Languages of publication

PL EN

Abstracts

EN
An overview of methods of mathematical modeling of evolutionary processes related to evolutionary game theory is presented. These methods are inspired by classical, economical game theory introduced by John von Neumann and Oskar Morgenstern and developed by others, including John Nash, one of the most important researchers involved in development of game theoretic methods. Evolutionary game theory was originated by John Maynard Smith in his pioneering papers with George Price and the book “Evolution and a theory of games”. Now the theory is one of the most important tools for modeling evolution of behavior. Introducing replicator dynamics, a system of ordinary differential equations describing changes among frequencies, allowed evolutionary game theory to become an independent and self-consisted mathematical theory. There are discussed basic concepts underlying evolutionary game theoretic framework in the paper. At the beginning, elementary classical game theoretic notions (strategy set, pure and mixed strategies, payoff function) and Nash equilibrium concept are introduced. Then I focus on basic static conditions of evolutionary stability, such evolutionarily stable strategy (ESS), evolutionarily stable state (ESState) and evolutionarily stable set (ESSet). Then evolutionary game theoretic framework is extended to dynamical context by introducing replicator dynamics. Mathematical toolbox presented in previous sections is used to prepare an example of application of evolutionary games to biological problems. A rigorously derived and analyzed example is hawk-dove game, the model of selection between aggressive and peaceful individuals presented by John Maynard Smith and George Price in their pioneering paper. Also example of rock-scissor-paper game is briefly discussed. This is an important example from biological point of view, since it describes cycling dynamics among different male mating strategies of Uta stansburiana lizards. Then extensions of basic evolutionary game framework and non-biological applications (in social sciences and economics) are discussed. The last section is devoted to famous prisoners dilemma. This is a canonical model used in modeling of evolution of cooperation.

Keywords

Journal

Year

Volume

58

Issue

3-4

Pages

443-458

Physical description

Dates

published
2009

Contributors

  • Instytut Nauk o Środowisku Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska

References

  • Dawkins R., 2007. Samolubny gen. Pruszyński i Ska, Warszawa.
  • Hofbauer J., Sigmund K., 1990. EvolutionarygGames and population dynamics. Cambridge University Press, Cambridge.
  • Krzanowska H., Łomnicki A.., Rafiński J., Szarski H., Szymura J. M., 2002. Zarys mechanizmów ewolucji. Wydawnictwo Naukowe PWN, Warszawa.
  • Maynard-Smith J., 1982. Evolution and the theory of games. Cambridge University Press, Cambridge.
  • Maynard-Smith J., 1996. The games lizards play. Nature, 380, 198–199.
  • Maynard-Smith J., Price G., 1973. The logic of animal conflict. Nature 245, 15–18.
  • Miękisz J., 2001. Polowanie na jelenia i rownowagi Nasha. Delta 11, 4–5.
  • Miękisz J., 2003. Być albo nie być altruista — dylemat więznia. Delta 7, 6–7.
  • Miękisz J., 2004. Kiedy Darwin spotka Mendla? Teoria gier w genetyce. Delta 4, 4–5.
  • Nowak M., 2006. Evolutionary dynamics. Belknap Press of Harvard University Press, Cambridge, MA.
  • Poleszczuk J., 2004, Ewolucyjna teoria interakcji społecznych, Scholar, Warszawa.
  • Sato Y., Crutchfield J., 2003. Coupled replicator equations for the dynamics of learning in multiagents Systems. Phys. Rev. E 67, 40–43.
  • Straffin P., 2004. Teoria gier. Scholar, Warszawa.
  • Sigmund K., 1993. Games of life. Oxford University Press, Oxford.
  • Taylor P., Jonker L., 1978. Evolutionary stable strategies and game dynamics. Math. BioSci. 40, 145–156.
  • Weibull J., 1995. Evolutionary game theory. MIT Press, Cambridge, MA.
  • Żurada J., Barski M., Jędruch W., 1996. Sztuczne sieci neuronowe. PWN, Warszawa.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv58p443kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.