Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 3-4 | 429-442
Article title

Algorytmy ewolucyjne i genetyczne, ewolucja sieci złożonych i modele regulacji genowej a mechanizm darwinowski

Title variants
Evolutionary and genetic algorithms, evolution of complex networks and gene regulatory models versus darwinian mechanisms
Languages of publication
Darwinian mechanism can be clearly understood and its power can be easily observed in exact form of 'Evolutionary Algorithms'. In the first step a simplest algorithm is considered (without 'crossing-over') to make clear definitions. Fitness is defined as the similarity to an arbitrarily chosen ideal. This method substitutes simulation of long period of object life for measuring its death probability. Typically much more powerful is Genetic Algorithm. It contains additionally a crossing-over mechanism, which allows a set of evolving objects to be a magazine of alternative, simultaneously collected properties. As optimization algorithm, it is typically faster than algorithms without crossing-over. Basic effects of evolution of complex networks, which can describe living objects, are discussed using Kauffman (Boolean) networks. The best parameters of network allowing adaptive evolution can be found near transition between order and chaos; Kauffman formulated the hypothesis known as 'life on the edge of chaos'. Kauffman suggests that spontaneous order (the biggest in this area) is a large part of observed order in living objects. This Kauffman's hypothesis is currently the strongest attack on area explored by Darwinian mechanisms. Although Kauffman's hypothesis for his gene regulatory model is experimentally confirmed by measuring stability, I am convinced that negative feedbacks are not taken into account sufficiently. For comparison, the gene regulatory model based on Banzhaf's idea is shortly described.
Physical description
  • Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Polska
  • Albert R., Barabási A.-L., 2002. Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47-97.
  • Barabási A.-l., Bonabeau E., 2003. Scale-Free Networks. Sci. Am. 288, 60-9.
  • Banzhaf W., 2003. On the Dynamics of an Artificial Regulatory Network. [W:] Advances in Artificial Life, 7th European Conference, ECAL'03. Lecture Notes in Artificial Intelligence 2801, Springer, 217-227
  • Gecow A., 2008a. Structural Tendencies - effects of adaptive evolution of complex (chaotic) systems. Int. J. Mod. Phys. C 19, 647-664.
  • Gecow A., 2008b. The purposeful information. On the difference between natural and artificial life. Dialogue & Universalism 18, 191-206.
  • Gecow A., 2009. A simplified algorithm for statistical investigation of damage spreading. BICS 5-7 Nov. 08 Tg. Mures Romania AIP Conf. Proc 1117, 133-141
  • Goldberg D. E., 1995. Algorytmy genetyczne i ich zastosowanie. Wydawnictwa Naukowo-Techniczne, Warszawa.
  • Hughes T. r, Hughes T. R., Marton M. J., Jones A. R., Roberts C. J. i współaut., 2000. Functional discovery via a compendium of expression profiles. Cell 102, 109-126.
  • Iguchi K., Kinoshita S. I., Yamada H., 2007. Boolean dynamics of Kauffman models with a scale-free network. J. Theor. Biol. 247, 138-151.
  • Kauffman S. A., 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437-467.
  • Kauffman S. A., 1971. Gene regulation networks: a theory for their global structure and behaviour. Curr. Topics Dev. Biol. 6, 145.
  • Kauffman S. A., 1993. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York.
  • Knabe J. F., Nehaniv C. L., Schilstra M. J., Quick T., 2006. Evolving Biological Clocks using Genetic Regulatory Networks. [W:] Proceedings of the Artificial Life X Conference (Alife 10). Rocha L. M., Yaeger L. S., Bedau M. A., Floreano D., Goldstone R. L., Vespignani A. (red.). MIT Press, 15-21.
  • Korona R., 1998. Mechanizmy ewolucyjne utrzymujące rozmnażanie płciowe. Kosmos 47, 163-173.
  • Korzeniewski B., 2001. Cybernetic formulation of the definition of life. J. Theor. Biol. 209, 275-286.
  • Korzeniewski B., 2005. Confrontation of the cybernetic definition of living individual with the real word. Acta Biotheor. 53, 1-28.
  • Luque B., Ballesteros F. J., 2004. Random walk networks. Physica A 342, 207-213.
  • Rämö P., Kesseli J., Yli-harja O., 2006. Perturbation avalanches and criticality in gene regulatory networks. J. Theor. Biol. 242, 164-170.
  • Serra R., Villani M., Semeria A., 2004. Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149-157.
  • Serra R., Villani M., Graudenzi A., Kauffman S. A., 2007. Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449-460.
  • Tempczyk M., 1998. Teoria chaosu a filozofia. Wydawnictwo CiS, Warszawa
  • Thom R., 1970. Topological models in biology. [W:] Towards a Theoretical Biology. Drafis. Waddington C. H. (red.). Aldine, Chicago.
  • Wagner A., 2001. Estimating coarse gene network structure from large-scale gene perturbation data. Santa Fe Institute Working Paper, 01-09-051.
  • Włodarczyk M., 1998. Wymiana materiału genetycznego i rekombinacja u bakterii. Kosmos 47, 137-146.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.