Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 58 | 3-4 | 417-428

Article title

Jak wzrasta złożoność organizmów

Content

Title variants

EN
On the growth of organismal complexity

Languages of publication

PL EN

Abstracts

EN
The genetic reduction or "genocentrism" of the Synthetic Theory of Evolution was unconducive to its integration with evolutionary morphology and did not leave any room for even addressing the complexity of organisms. For the same reason the concept of function was effectively ignored in the conceptual scheme of this theory that pooled all phenotypic and genetic determinants of reproductive success under the heading of fitness. In fact the concept of function is critical to understanding the complexity of any goal-directed system and the growth of organismal complexity comes down to an increase in the number of functions even it may be easier to measure by morphological diversity. It is a great realization of the 20th century that body parts at all levels are commnly coopted to new functions and thus genuine multifunctionality (i.e., performing multiple, discrete and unrelated functions) is constantly generated by an evolving organization. What seems to be less well understood is that new fuctions arise from ubiquitous nonfunctinal interactions of body parts with their environment that may be external (Umwelt, niche) or internal (milieu intérieur) to the organism. While these interactions arise as inevitable causal by-products of a structure's functioning or static properties, their impact is accidental to any organismal needs (that is, ultimately, any current functions) and only sometimes happens to be useful in which case an interaction becomes a function. The is exactly the way mutations are used by natural selection, hence the dynamics of nonfunctional interactions that are generated by body parts is considered here to be a major factor of evolution and referred to as parafunctional variation. The growth of complexity as observed in the evolution of organims would not be possible without multiplication of parts. This is because cooptions to new functions lead to adaptive (and sometimes also direct, functional) conflicts with old ones and because all functions tend to be crude and generalized (euryfunctional) at the beginning and need refinements through a subdivision of tasks. The escape from adaptive conflict between unrelated functions (as acquired via the mechanism of cooption) is resolved through Dohrn's exchange of functions between duplicated structures (serial homologues or paralogues) where one of them takes over a minor function of the ancestral structure and becomes adapted to it as to the main function. Most cases described as neofunctionalization of duplicated genes are in fact cases of the exchange of functions. Refinements of generalized functions are achieved by the way of Severtsov's subdivision of function into partial tasks or subfunctions, which generates the complexity of organismic apparatuses (e.g., osteomuscular devices) and molecular quaternary structures such as heteromers that arise by duplication and coaptation of molecules (as in the heterotetramers of hemoglobin). Some cases described under the heading of subfunctionalization fall into this category while others represent cases of simple divergence of paralogues under independent expression control. The latter is facilitated by the mobility of genomic sequences and the relative freedom of association between regulatory and structural genes. Other than that, the complexity of both organs and molecules seems to evolve under similar rules that have yet to be better understood and integrated. The combined action of natural selection, genetic variation, and parafunctional variation is deemed suffcient to explain the evolutionary growth of complexity. While natural selection seizes upon any beneficial effects including those afforded by the thermodynamic propensities of organic configurations, there is no good reason or evidence to believe in the spontaneous generation of higher levels of organization such as multicellularity.

Keywords

Journal

Year

Volume

58

Issue

3-4

Pages

417-428

Physical description

Dates

published
2009

Contributors

  • Muzeum i Instytut Zoologii, Polska Akademia Nauk, Wilcza 64, 00-679 Warszawa, Polska

References

  • Bock W. J., 1959. Preadaptation and multiple evolutionary pathways. Evolution 13, 194-211.
  • Bock W. J., 1979. The synthetic explanation of macroevolutionary change - a reductionistic approach. Bull. Carnegie Mus. Nat. Hist. 13, 20-69.
  • Bonner J. T., 1988. The Evolution of Complexity by Means of Natural Selection. Princeton University Press, Princeton.
  • Cammack R., 1993. A new use for an old enzyme. Curr. Biol. 3, 41-43.
  • Carroll S. B., 2005. Evolution at two levels: on genes and form. PLoS Biol. 3,1159-1166.
  • Cisne J. L., 1974. Evolution of the world fauna of aquatic free-living arthropods. Evolution 28, 337-366.
  • Conant G. C., Wolfe K. H., 2008. Turning a hobby into a job: How duplicated genes find new functions. Nature Rev. Genetics 9, 938-950.
  • Darwin K., 1859/2009. O powstawaniu gatunków. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  • Des Marais D. L., Rausher M. D., 2008. Escape from adaptive conflict after duplication in an anthocanin pathway gene. Nature 454, 762-765.
  • Dohrn A., 1875. Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Engelmann, Leipzig.
  • Duarte, J. M., Cui L., Wall P. K., Zhang Q., Zhang X., Leebens-Mack J., Ma H., Altman N., de Pamphilis C. W., 2006. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol. 23, 469-478.
  • Eldredge N., 1985. Unfinished Synthesis. Biological Hierarchies and Modern Evolutionary Thought. Oxford University Press, New York, Oxford.
  • Force A., Lynch M., Pickett F. B., Amores A., Yan Y., Postlethwait J., 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531-1545.
  • Futuyma D. J., 2005/2008. Ewolucja. Wyd. Uniwersytetu Warszawskiego, Warszawa.
  • Ghiselin M. T., 1980. The failure of morphology to assimilate Darwinism. [W:] The Evolutionary Synthesis/Perspectives on the Unification of Biology. Mayr E. i Provine W. B. (red.). Harvard Uni. Press, Cambridge (Mass), 180-193.
  • Gould S. J., 1977. Ontogeny and Phylogeny. The Belknap Press, Cambridge (Mass.) and London.
  • Gould S. J., 2002. The Structure of Evolutionary Theory. The Belknap Press of Harvard Uni. Press, Cambridge (Mass.) and London.
  • Gould S. J., Lewontin R. C., 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. London B 205, 581-598.
  • Gould S. J., Vrba E., 1982. Exaptation: A missing term in the science of form. Paleobiology 8, 4-15.
  • Grębecki A., Kuźnicki L., 1956. Zagadnienie stosunku organizmu do środowiska na tle fizjologii Paramecium caudatum. Kosmos 5, 301-313 i 474-485.
  • Hendrichs, H., 1996. The complexity of social and mental structures in nonhuman mammals. [W:] Evolution, Order and Complexity. Khalil E. L., Boulding K. E. (red.). Routledge, London and New York, 104-121.
  • Hickman, M. A., Rusche, L. N., 2007. Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. PLOS Genet 3, e126.
  • Hittinger C. T., Carroll S. B., 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449, 677-681.
  • Hughes A.J., Lambert D. M., 1984. Functionalism, structuralism and 'ways of seeing'. J. Theor. Biol. 111, 787-800.
  • Hurles M., 2004. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2, 900-904.
  • Kubicz A., 2009. Różnorodne drogi ewolucji białek. [W:] O przyrodzie i kulturze. Dobierzewska-Mozrzymas E., Jezierski A. (red.). Wyd. Uniwersytetu Wrocławskiego, Wrocław, 37-48 (Studium Generale/Seminaria Interdyscyplinarne 13, 37-48).
  • Kulczyński S., 1920. Über Myrmekophilie einiger polnischen Centaurea-Arten. Bull. Acad. Polon. Sci. Lett., Cl. Sci. Math. Nat., B Sci. Nat., 118-120.
  • Kumagai I., Takeda S., Miura K., 1992. Functional conversion of the homologous proteins α-lactalbumin and lysozyme by exon exchange. PNAS 89, 5887-5891.
  • Kunicki-Goldfinger W. J. H., 1976. Ewolucja biologiczna jako wzrost stopnia organizacji. [W:] Ewolucja biologiczna/Problemy informacji i rozwoju. Nowiński Cz. (red.). Ossolineum, Wrocław, 7-35.
  • Kuźnicki L.,1970. Czynniki i mechanizmy przemian ewolucyjnych. [W:] Zasady nauki o ewolucji, Tom 2. Kuźnicki L., Urbanek A. (red.). PWN, Warszawa, 15-225.
  • Lubomirski A., 1976. Rozwój i niezmienniki. [W:] Ewolucja biologiczna/Problemy informacji i rozwoju. Nowiński Cz. (red.) Ossolineum, Wrocław, 155-163.
  • Lynch M., 2004. Gene duplication and evolution. [W:] Evolution From Molecules to Ecosystems. Moya A., Font E. (red.). Oxford University Press, 33-47.
  • Lynch V. J., 2007. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol. Biol. 7, 2. doi:10.1186/1471-2148-7-2
  • Maddox J., 1991. Is Darwinism a thermodynamic necessity? Nature 350, 653.
  • Maynard Smith J., Szathmary E., 1995. The Major Transitions in Evolution. W. H. Freeman / Spektrum. Oxford etc.
  • Mayr E., 1982. The Growth of Biological Thought. The Belknap Press of Harvard University Press, Cambridge (Mass.) and London.
  • McShea D. W., 1991. Complexity and evolution: what everybody knows. Biol. Philos. 6, 303-324.
  • McShea D. W., 1994. Mechanisms of large-scale evolutionary trends. Evolution 48, 1747-1763.
  • McShea D. W., 2000. Functional complexity in organisms: parts as proxies. Biol. Philos. 15, 641-668.
  • McShea D. W., 2005. The evolution of complexity without natural selection, a possible large-scale trend of the fourth kind. Paleobiology 31, 146-156.
  • Michod R. E., Nedelcu A. M., 2004. Cooperation and conflict during the unicellular-multicellular and prokaryotic-eukaryotic transitions. [W:] Evolution From Molecules to Ecosystems. Moya A. i Font E. (red.). Oxford University Press, 195-208.
  • Moorhead P. S., Kaplan M. M. (red.), 1967. Mathematical Challenges to the neo-Darwinian Interpretation of Evolution. Wistar Uni. Press, Philadelphia.
  • Newman S. A., Bhat R., 2008. Dynamical patterning molecules: physico-genetic determinants of morphological development and evolution. Phys. Biol. 5, doi:10.1088/1478-3975/5/1/015008.
  • Nowak L., 2004. O metodologii Karola Darwina. [W:] Teoria i metoda w biologii ewolucyjnej, Łastowski K. (red.) Zysk i S-ka, Poznań, 13-56 (Poznańskie Studia z Filozofii Humanistyki 7, 20).
  • Nowiński Cz., 1974. Pojęcie doboru naturalnego. [W:] Ewolucja biologiczna. Nowiński Cz. (red.). Ossolineum, Wrocław, 39-124.
  • Nurse P., 2008. Life, logic and information. Nature 454, 424-426.
  • Ohno S., 1970. Evolution by Gene Duplication. Springer, New York.
  • Piatigorsky, J. 2007. Gene sharing and evolution/The diversity of protein functions. Harvard University Press, Cambridge, Mass.
  • Pigliucci M., Kaplan J., 2000. The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends Ecol. Evol. 15, 66-70.
  • Plate L., 1925. Die Abstammungslehre. Gustav Fischer, Jena.
  • Raabe Z., 1954. Morfogenetyczne zasady Siewiercowa w oczach protozoologa J. Geleia. Kosmos 3, 428-436.
  • Raff R. A., 1996. The Shape of Life/Genes, Development, and the Evolution of Animal Form. The Uni. of Chicago Press, Chicago and London.
  • Rainey P. B., 2007. Unity from conflict. Nature 446, 616.
  • Seaver E. C., 2003. Segmentation: mono- or polyphyletic? Int. J. Dev. Biol. 47, 583-595.
  • Sjewiercow A. N., 1931/1956. Morfologiczne prawidłowości ewolucji. PWN, Warszawa.
  • Steinberg M., 2003. Cell adhesive interactions and tissue self-organization. [W:] Origination of Organismal Form/Beyond the Gene in Developmental and Evolutionary Biology. Muller G. B., Newman S. A. (red.), The MIT Press, Cambridge (Mass.), 137-163.
  • Stumpf M. P. H., Thorne, T., de Silva E., Stewart, R., An H.J., Lappe M., Wiuf C., 2008. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. 105, 6959-6954.
  • Szathmary E., Maynard Smith J., 1995. The major evolutionary transitions. Nature 374, 227-232.
  • Urbanek A., 1967. Przebieg ewolucji i historia organizmów. [W:] Zasady nauki o ewolucji. Tom 1, Kuźnicki L., Urbanek A. PWN, Warszawa, 153-617.
  • Urbanek A., 1970. Prawidłowości rozwoju rodowego. [W:] Zasady nauki o ewolucji. Tom 2. Kuźnicki L., Urbanek A. PWN, Warszawa, 227-557.
  • Valentine J. W., Collins A. G., Meyer C. P., 1994. Morphological complexity increase in metazoans. Paleobiology 20, 131-142.
  • Whitfield J., 2008. Postmodern evolution? Nature 455, 281-284.
  • Whittington C. M., Papenfuss A. T., Bansal P., Torres A. M., Wong E. S.W., Deakin J. E. Graves T., Alsop A., Schatzkamer K., Kremitzki C., Ponting C. P., Temple-Smith P., Warren W. C., Kuchel P. W., Belov K., 2008. Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res. 18, 986-994.
  • Wistow G., Piatigorsky J., 1987. Recruitment of enzymes as lens structural proteins. Science 236, 1554-1556.
  • Zhang J., 2003. Evolution by gene duplication: an update. Trends Ecol. Evol 18, 292-298.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv58p417kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.