Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 3-4 | 385-393
Article title

Ewolucja genomów i powstawanie nowych genów

Title variants
Evolution of genomes and the origin of new genes
Languages of publication
Genomes of Bacteria and Archaea are extremely compact, almost devoid of noncoding DNA. Sizes of these "prokaryotic" genomes span only two orders of magnitude and their evolution is characterized by: strong pressure for the removal of nonfunctional DNA, frequent structural rearrangements resulting in randomization of gene order, profound differences in gene content between related forms and ubiquitous horizontal gene transfer (HGT). Genome sizes in Eukaryotes vary enormously, spanning five orders of magnitude. A relatively weak correlation between the genome size and organismal complexity in Eukaryotes, known as the C-value paradox, results from interspecific differences in the amount of noncoding DNA, composed of introns, repetitive sequences and mobile elements. The plausible explanation for the disparities between prokaryotic and eukaryotic genomes are the differences of the effective population sizes between organisms, which affect efficiency of natural selection. The accumulation of "extra" DNA is weakly deleterious and it is efficiently removed by selection in huge populations of Bacteria and Archaea. In smaller populations of eukaryotes, particularly multicellular organisms, drift overcomes selection, rendering this "extra" DNA effectively neutral, enabling its accumulation and consequently increase of genome size. New genes may emerge through multiple mechanisms. In bacteria and Archaea HGT is very important in this respect. In Eukaryotes duplications, both whole genome and segmental, are of utmost importance. One copy of a duplicated gene most often accumulates deleterious mutations and becomes a pseudogene. However, sometimes both duplicated copies are retained - one of them evolves a new function in the process of neofunctionalization or each copy undergoes specialization in the process of subfunctionalization.
Physical description
  • Instytut Nauk o Środowisku Uniwersytetu Jagiellońskiego, Gronostajowa 7, 30-387 Kraków, Polska
  • Abby S., Daubin V., 2007. Comparative genomics and the evolution of prokaryotes. Trends Microbiol. 15, 135-141.
  • Achtman M., Wagner M., 2008. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431-440.
  • Adams K. L., Daley D. O., Qiu Y. L., Whelan J., Palmer J. D., 2000. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354-357.
  • Andolfatto P., 2005. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149-1152.
  • Bensasson D., Zhang D. X., Hartl D. L., Hewitt G. M., 2001. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol. Evol. 16, 314-321.
  • Brown T. A., 2009. Genomy. PWN, Warszawa.
  • Carlton J. M., Hirt R. P., Silva J. C. i współaut., 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207-212.
  • Carninci P., Kasukawa T., Katayama S. i współaut., 2005. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563.
  • Fraser C., Alm E. J., Polz M. F., Spratt B. G., Hanage W. P., 2009. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741-746.
  • Gaut B. S., D'ennequin M. L., Peek A. S., Sawkins M. C., 2000. Maize as a model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. USA 97, 7008-7015.
  • Keeling P. J., Palmer J. D., 2008. Horizontal gene transfer in eukaryotic evolution. Nature Rev. Genet. 9, 605-618.
  • Koonin E. V., 2009. Darwinian evolution in the light of genomics. Nuc. Acid. Res. 37, 1011-1034.
  • Koonin E. V., Wolf Y. I., 2008. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nuc. Acid. Res. 36, 6688-6719.
  • Kozłowski J., Konarzewski M., Gawełczyk A. T., 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl. Acad. Sci. USA 100, 14080-14085.
  • Lapierre P., Gogarten J. P., 2009. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107-110.
  • Lawrence J. G., Hendrickson H., 2005. Genome evolution in bacteria: order beneath chaos. Curr. Opinion Microbiol. 8, 572-578.
  • Long M., Betran E., Thornton K., Wang W., 2003. The origin of new genes: Glimpses from the young and old. Nature Rev. Genet. 4, 865-875.
  • Lynch M., 2007 The origins of genome architectur.e Sinauer, Sunderland.
  • Lynch M., Conery J. S., 2003. The origins of genome complexity. Science 302, 1401-1404.
  • Medini D., Donati C., Tettelin H., Masignani V., Rappuoli R., 2005. The microbial pan-genome. Curr. Opinion Genet. Dev. 15, 589-594.
  • Nei M., Rooney A. P., 2005. Concerted and birth-and-death evolution of multigene families. Annual Rev. Genet. 39, 121-152.
  • Ochman H., Lawrence J. G., Groisman E. A., 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299-304.
  • Pouchkina-stantcheva N. N., Mcgee B. M., Boschetti C. i współaut., 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318, 268-271.
  • Putnam N. H., Butts T., Ferrier D. E. K. i współaut., 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071.
  • Rieseberg L. H., Willis J. H., 2007. Plant speciation. Science 317, 910-914.
  • Szarski H., 1983. Cell size and the concept of wasteful and frugal evolutionary strategies. J. Theor. Biol., 105, 201-209.
  • Taylor J. S., Raes J., 2004. Duplication and divergence: The evolution of new genes and old ideas. Annual Rev. Genet. 38, 615-643.
  • Thomas C. M., Nielsen K. M., 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711-721.
  • Wang W., Zhang J. M., Alvarez C., Llopart A., Long M., 2000. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17, 1294-1301.
  • Wicker T., Sabot F., Hua-van A. i współaut., 2007. A unified classification system for eukaryotic transposable elements. Nature Rev. Genet. 8, 973-982.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.