PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2009 | 58 | 1-2 | 221-228
Article title

Fizjologiczne aspekty tolerancji roślin na metale ciężkie

Authors
Content
Title variants
EN
Physiological aspects of plant heavy metal tolerance
Languages of publication
PL EN
Abstracts
EN
It is a common characteristic of all life forms that some of the elements present in the environment are accumulated and others are rejected. The rates of accumulation are necessarily governed by physiological requirements rather than toxicity. Because metals like Ca, Mg, Fe, Cu, Zn, Mn, Mo, Ni are essential for normal running a vast number of metabolic processes, plants evoke special systems of metal uptake and transport during evolution. On the other hand, the same metals present in an excess in plant cells may become seriously toxic to the cells. Moreover, the low specificity of the metal uptake and transport systems makes them to function also as an entrance for nonessential and toxic substances (Cd, Pb). The existence of a complex systems for metal uptake and transport processes, able to respond to continuously changing environmental conditions, is necessary for maintaining metal homeostasis in plants. It is highly probable that these complex systems of metal uptake and transport can function as systems of heavy metal tolerance in plants, as well. According to the recent reports, the main processes involved in maintaining heavy metal homeostasis in plants are: metal ions mobilization and uptake from the soil, their short distance transport in roots, complexation by different ligands in cytosol, compartmentation in root cells, xylem loading and long distance transport in xylem, distribution in shoots, xylem unloading, ions trafficking in apoplastic and symplastic passage of leave cells, their chelating in cytosol and compartmentation in leave cells and structures. Although some of these processes are well recognized, a number of them remain still enigmatic. It is strongly believed that further investigation of these processes should help to explain differences in metal tolerance between plant varieties as well as the phenomenon of heavy metal hyperaccumulation in plants.
Keywords
Journal
Year
Volume
58
Issue
1-2
Pages
221-228
Physical description
Dates
published
2009
Contributors
  • Zakład Fizjologii Roślin, Instytut Biologii, Wydział Biologii i Nauk o Ziemi, Uniwersytet Marii Curie-Skłodowskiej, Akademicka 19, 20-033 Lublin, Polska
References
  • Abdel-Ghany S. E., Burkhead J. L., Gogolin K. A., Andres-colas N., Bodecker J. R., Puig S., Penarrubia L., Pilon M., 2005. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett. 579, 2307-2312.
  • Balandin T., Castresana C., 2002. AtCOX17, an arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol. 129, 1852-1857.
  • Bringezu K., Lichtenberg O., Leopold I., Neumann D., 1999. Heavy metal tolerance of Silene vulgaris. J. Plant Physiol. 154, 536-546.
  • Castiglione S., Franchin C., Fossati T., Lingua G., Torrigiani P., Biondi S., 2007. High zinc concentration reduce rooting capacity and alter metallothionein gen expression in white poplar (Populus alba L. cv. VILLAFRANCA). Chemosphere 67, 1117-1126.
  • Clemens S., 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88,1707-1719.
  • Clemens S., Palmgren M. G., Kramer U., 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309-315.
  • Cobbett C. S., Goldsbrough P., 2002. Phytochelatins and metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Biol. 53, 159-182.
  • Curie C., Briat J. F., 2003. Iron transport and signaling in plants. Ann. Rev. Plant Biol. 123, 825-832.
  • De La Fuente J. M., Verenice R. R., 1997. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science276, 5318-1566.
  • De Knecht J. A., Von Baren N., Ten Bookum W. M., Sang H.w.w. F., Koevoets P. L. M., Schat H., Verkleij J. A. C., 1995. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci. 106, 9-18.
  • De Vos C. H. R., Vonk M. J., Vooijs R., Schat H., 1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol. 98, 700-706.
  • Douchkov D., Gryczka C., Stephan U. W., Hell R., Bäu H., 2005. Etopic of nicotianamine synthase genes result in improved iron accumullation and increased nickiel tolerance in transgenic tobacco. Plant Cell Environ. 28, 365-374.
  • Ebbs S., Lau I., Ahner B., Kochian L., 2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. and C. Presl). Planta 214, 635-640.
  • Ernst W. H. O., Verkleij J. A. C., Schat H., 1992. Metal tolerance in plants. Acta Bot. Neerl. 41, 229-248.
  • Evans K. M., Gatehouse J. A., Lindsay W. P., Shi J., Tommey A. M., Robinson N. J., 1992. Expression of metallothionein-like gene Ps-MT-alpha in Escherichia coli and Arabidopsis thaliana and analysis of trace metal accumulation: implications for Ps-MT-alpha function. Plant Mol. Biol. 20, 1019-1028.
  • Gaymard F., Pilot G., Lacombe B., Bouchez D., Bruneau D., Boucherez J., Michaux-ferriere N., Thibaud J. B., Sentenac H., 1998. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647-655.
  • Gekeler W., Grill E., Winnacker E. L., Zenk M. H., 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c, 361-369.
  • Grill E., Löffer S., Winnacker E. L., Zenk M. H., 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86, 6838-6842.
  • Grill E., Winnacker E. L., Zenk M. H., 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230, 674-676.
  • Grotz N., Guerinot M. L., 2006. Molecular aspects of Cu, Fe and Zn homeostasis in plants. BBA-Mol. Cell. Res. 1763, 595-608.
  • Haydon M. J., Cobbett C. S., 2007. Transporters of ligands for essential metal ions in plants. New Phytol. 174, 499-506.
  • Himelblau E., Amasino R.M., 2000. Delivering copper within plant cells. Curr. Opin. Plant Biol. 3, 205-210.
  • Imsande J., Touraine B. N., 1994. Demand and the regulation of nitrate uptake. Plant Physiol. 105, 3-7.
  • Ingle R. A., Mugford S. T., Rees J. D., Campbell M. M., Smith J. A. C., 2005. Constitutively high expression of the histidine biosynthetic pathway contribution to nickiel tolerance in hyperaccumulator plants. Plant Cell 17, 2089-2106.
  • Karley A. J., Leigh R. A., Sanders D., 2000. Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci. 5, 465-470.
  • KERKEBL., Kramer U., 2003. The role of free histidine in xylem loading of nickel in Alysum lesbiacum and Brassica juncea. Plan Physiol. 137, 901-910.
  • Kim S., Tahahashi M., Higuchi K., Tsunoda K., Nakanishi H., Yoshimura E., Mori S., Nishizawa N. K., 2005. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickiel, to plants. Plant Cell Physiol. 46, 1809-1818.
  • Klapheck S., Flieger W., Zimmer I., 1994. Hydroxymethyl-phytochelatins (γ-glutamylcysteine)n-serine)) are metal-induced peptides pf the Poaceae. Plant Physiol. 104, 1325-1332.
  • Kopcewicz J., Lewak S., 1998. Podstawy fizjologii roślin. PWN, Warszawa.
  • Krämer U., 2005. Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16, 133-141.
  • Krämer U., Cotterhowells J. D., Charnock J. M., Baker A. J. M., 1996. Free histidine as a metal chelator in plants that accumulate nickiel. Nature 379, 635-638.
  • Krämer U., Grime G. W., Smith J. A. C., Hawes C. R., Baker A. J. M., 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. B 130, 346-350.
  • Krämer U., Talke I. N., Hanikenne M., 2007. Transition metal transport. FEBS Lett. 581, 2263-2272.
  • Krotz R. M., Evangelou B. P., Wagner G. J., 1989. Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiol. 91, 780-787.
  • Küpper H., Mijovilovich A., Meyer-klaucke W., Kroneck P. M. H., 2004. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype)reveald by X-ray absorption spectroscopy. Plant Physiol. 134, 748-757.
  • Kubota H., Sato K., Hamada T., Maitani T., 2000. Phytochelatin homolog induced in hairy roots of horseradish. Phytochemistry 53, 239-245.
  • Lane B., Kajoika R., Kennedy T., 1987. The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 65, 1001-1005.
  • Ma J. F., Ryan P. R., Delhaize E., 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273-278.
  • MacFarlane G. R., Burchett M. D., 1999. Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Frosk.) Vierh. Environ. Exp. Bot. 41, 167-175.
  • Martel E. A., 1974. Radioactivity of tobacco trichomes and insoluble cigarette smoke particles. Nature 249, 215-217.
  • Mathys W., 1977. The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant 40, 130-136.
  • Mclaughlin M. J., Parker D. R., Clarke J. M., 1999. Metals and micronutrients - food safety issues. Field Crop Res. 60, 143-163.
  • Meuwly P., Thibault P., Schwał A. L., Rauser W. E., 1995. Three families of thiol peptides are induced by cadmium in maize. Plant J. 7, 391-400.
  • Mir G., Domenech J., Huguet G., Guo W-j., Goldsbrouh P., Atrian S., Molinas M., 2004. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J. Exp. Bot. 55, 2483-2493.
  • Mishra S., Srivastava S., Tripathi R. D., Govindarajan R., Kuriakose S. V., Prasad M. N. V., 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Bioch. 44, 25-37.
  • Murphy A., Zhou J., Goldsbrough P., Taiz L., 1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol. 113, 1293-1301.
  • Nelson N., 1999. Metal ion transporters and homeostasis. EMBO J. 18, 4361-4371.
  • Neumann D., Zur Nieden U., Lichtenberger O., Leopold I., 1995. How does Armeria maritima tolerate high heavy metal concentrations? J. Plant Physiol. 146, 704-717.
  • Neumann D., Zur Nieden U., Schweiger W., Leopold I., Lichtenberger O., 1997. Heavy metal tolerance of Minuartia verna. J. Plant Physiol. 151, 101-108.
  • Nigam R., Srivastawa S., Prakash S., Srivastawa M. M., 2001. Cadmium mobilisation and plant availability - the impact of organic acids commonly exuded from roots. Plant Soil 230, 107-113.
  • Ortiz D., Ruscitti T., Mccue K. F., Ow D. W., 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 270, 4721-4728.
  • Pich A., Scholz G., 1996. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill): Nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot. 47, 41-47.
  • Roosens N. H., Bernard C., Leplae R., Verbruggen N., 2004. Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett. 577, 9-16.
  • Salt D. E., Rauser W. E., 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107, 1293-1301.
  • Salt D. E., Price R. C., Baker A. J. M., Raskin I., Pickerin I. J., 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol. 33, 713-717.
  • Schurr U., Schulze E. D., 1996. Effect of drought on nutrient and ABA transport in Ricinus communis. Plant Cell Environ. 19, 665-674.
  • Senden M. H. M., Wolterbeek H. A. T., 1990. Effect of citric acid on the transport of cadmium through xylem vessels of excised tomato steam-leaf systems. Acta Bot. Neerl. 39, 297-303.
  • Senden M. H. M., Van Der Meer A. J. G. M., Verburg T. G., Woltetbeek H. Th., 1994. Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. J. Exp. Bot. 45, 597-606.
  • Seth C. S., Chaturvedi P. K., Misra V., 2008. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotox. Environ. Safe 71, 76-85.
  • Steffens J. C., 1990. The heavy-metal binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 553-575.
  • Talke I. N., Hanikenne M., Kramer U., 2006. Zinc-dependent global transcriptiona control, transcriptional deregulation, and higher gen copy number for gens in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 142, 148-147.
  • Tester M., Leigh R. A., 2001. Partitioning of nutrient transport processes in roots. J. Exp. Bot. 52, 445-457.
  • Tripathi R. D., Rai U. N., Gupta M., Chandra P., 1996. Induction of phytochelatins in Hydrilla verticillata (lf) royle under cadmium stress. Bull. Environ. Contam. Tox. 56, 505-512.
  • Vatamaniuk O. K., Bucher E. A., Sundaram M. V., Rea P. A., 2005. CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem. 280, 23684-23690.
  • Von Wiren N., Klair S., Bansal S., Briat J. F., Khord H., Shioiri T., Leigh R. A., Hider R. C., 1999. Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiol. 119, 1107-1114.
  • Wnitz H., Fox T., Wu Y.-y., Feng V., Chen W. Q., Chang H. S., Zhu T., Vulpe C., 2003. Expression nprofiles of Arabidopsis thaliana in mineral deficiences reveal novel transporters involved in metal homeostasis. J. Biol. Chem. 278, 47644-47653.
  • Yang X. E., Baligar V. C., Foster J. C., Martens D. C., 1997. Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant Soil 196, 271-276.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv58p221kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.