Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 1-2 | 143-151
Article title

Mechanizmy adhezji i penetracji komórek eukariotycznych przez wybrane patogeny bakteryjne

Title variants
The mechanisms of adherence and penetration of eukaryotic cells by bacterial pathogens
Languages of publication
Pathogenic bacteria have developed different mechanisms to cause disease in human hosts. Bacterial pathogens express a wide range of molecules that bind host cell targets to facilitate a variety of different host responses. Many bacterial pathogens are able to invade and survive within cells at mucosal membranes. Remarkably, the bacteria themselves orchestrate this process through the exploitation of host cellular signal transduction pathways. Many pathogenic bacteria have evolved strategies to evade the host immune response by subverting the cytoskeleton through various toxins to persuade host cells to take the bacteria into the cell, or in the case mainly of "professional phagocytes" to prevent their uptake into the phagolysosome. They use receptor-mediated endocytosis in invasion. Like other bacteria, Salmonella has evolved the habit of invading host cells in order to hide from the immune system and to gain nutrients. However, Salmonella also invades the epithelial cells in order to escape the gut into the surrounding tissues. Whereas E. coli binds to the gut epithelial cells, Salmonella binds to M cells, present in the Peyer's patches (Lymph nodes) in the gut wall. Interaction of Sh. flexneri with individual epithelial cells shows a series of events in which the bacterium, upon contact with the cell surface, releases a set of Ipa proteins through a specialized activable, type-III secretory apparatus. Intracellular invasion can lead to disruption of host tissue integrity and perturbation of the immune system. An understanding of the molecular basis of bacterial invasion and of host cell adaptation to intracellular bacteria will provide fundamental insights into the pathophysiology of bacteria and the cell biology of the host.
Physical description
  • Prywatne Salezjańskie Liceum Ogólnokształcące, Młodych Techników 17, 53-647 Wrocław, Polska
  • Berg R. D., 1995. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3, 149-154.
  • Berg R. D., Garlington A. W., 1979.Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect. Immun. 23, 403-411.
  • Bieber D., Ramer S. W., Wu C. Y., Murray W. J., Tobe T., Fernandez R., Schoolnik G. K., 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114-2118.
  • Darwin K. H., Miller V. L., 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12, 405-428.
  • Dehio C., Prevost M. C., Sansonetti P. J., 1995. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J. 14, 2471-2482.
  • Egile C., Loisel T. P., Laurent V., Li R., Pantaloni D., Sansonetti P. J., Carlier M. F., 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319-1332.
  • Francis C. L., Jerse A. E., Kaper J. B.,. Falkow S., 1991. Characterization of interactions of enteropathogenic Escherichia coli O127:H6 with mammalian cells in vitro. J. Infect. Dis. 164, 693-703.
  • Galan J. E., Zhou D., 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97, 8754-8761.
  • Gautreaux M. D., Deitch E. A., Berg R. D., 1994. Bacterial translocation from the gastrointestinal tract to various segments of the mesenteric lymph node complex. Infect. Immun. 62, 2132-2134.
  • Gewirtz A. T., Navas T. A., Lyons S., Godowski P. J., Madara J. L., 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882-1885.
  • Gewirtz A. T., Simon P. O. Jr, Schmitt C. K., Taylor L. J., Hagedorn C. H., O'brien A. D., Neish A. S., Madara J. L., 2001. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99-109.
  • Goosney D. L., Knoechel D. G., Finlay B. B., 1999. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg. Infect. Dis. 5, 216-223.
  • Hathaway L. J., Kraehenbuhl J. P., 2000. The role of M cells in mucosal immunity. Cell. Mol. Life Sci. 57, 323-332.
  • Hilbi H., Moss J. E., Hersh D., Chen Y., Arondel J., Banerjee S., Flavell R. A., Yuan J., Sansonetti P. J., Zychlinsky A., 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895-32900.
  • Huang F. P., Platt N., Wykes M., Major J. R., Powell T. J., Jenkins C. D., Macpherson G. G. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435-444.
  • Hueck C. J., 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379-433.
  • Islam A. F., Moss N. D., Dai Y., Smith M. S., Collins A. M., Jackson G. D., 2000. Lipopolysaccharide-induced biliary factors enhance invasion of Salmonella enteritidis in a rat model. Infect. Immun. 68, 1-5.
  • Jakóbisiak M. 1996. Immunologia. Warszawa. Wydawnictwo Naukowe PWN.
  • Jensen V. B., Harty J. T., Jones B. D., 1998. Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect. Immun. 66, 3758-3766.
  • Kato T., Owen R. L., 1999. Structure and function of intestinal mucosal epithelium. Mucosal Immunology. Academic Press, 115-128.
  • Kim J. M., Eckmann L., Savidge T. C., Lowe D. C., Witthoft T., Kagnoff M. F., 1998. Apoptosis of human intestinal epithelial cells after bacterial invasion. J. Clin. Invest. 102, 1815-1823.
  • Knutton S., Shaw R. K., Anantha R. P., Donnenberg M. S., Zorgani A. A., 1999. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol. Microbiol. 33, 499-509.
  • Kołodyński J., 1998: Podstawy bakteriologii. Wrocław. Wydawnictwo Uniwersytetu Wrocławskiego.
  • köhler h., rodrigues S. P., McCrmick B. A., 2002. Shigella flexneri Interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell Invasion and in activation of the mitogen-activated protein kinase ERK. Infect. Immun. 70, 1150-1158.
  • Lee C. A., Falkow S., 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304-4308.
  • Lee C. A., Silva M., Siber A. M., Kelly A. J., Galyov E., McCrmick B. A., 2000. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl. Acad. Sci. USA 97, 12283-12288.
  • Maaser C., Heidemann J., Von Eiff C., Lugering A., Spahn T. W., Binion D. G., Domschke W., Lugering N., Kucharzik T., 2004. Human intestinal microvascular endothelial cells express Toll-like receptor 5: a binding partner for bacterial flagellin. J. Immunol. 172, 5056-5062.
  • Mastroeni P., Sheppard M., 2004. Salmonella infections in the mouse model: host resistance factors and in vivo dynamics of bacterial spread and distribution in the tissues. Microbes Infect. 6, 398-405.
  • McCrmick B. A, Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L., 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 160, 455-466.
  • Miliotis M. D., Koornhof H. J., Phillips J. I., 1989. Invasive potential of noncytotoxic enteropathogenic Escherichia coli in an in vitro Henle 407 cell model. Infect. Immun. 57, 1928-1935.
  • Monack D. M., Raupach B., Hromockyj A. E., Falkow S., 1996. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. U S A. 93, 9833-9838.
  • Moon H. W., Whipp S. C., Argenzio R. A., Levine M. M., Giannella R. A., 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41, 1340-1351.
  • Mounier J., Vasselon T., Hellio R., Lesourd M., Sansonetti P. J., 1992. Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect. Immun. 60, 237-248.
  • Nataro J. P., Kaper J. B., 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142-201.
  • Niedergang F., Sirard J. C., Blanc C. T., Kraehenbuhl J. P., 2000. Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc. Natl. Acad. Sci. USA 97, 14650-14655.
  • O'Boyle C. J., Macfie J., Mitchell C. J., Johnstone D., Sagar P. M., Sedman P. C., 1998. Microbiology of bacterial translocation in humans. Gut 42, 29-35
  • OwenS W. E., Berg R. D., 1980. Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infect Immun. 27, 461-467.
  • Page A. L., Ohayon H., Sansonetti P. J., Parsot C., 1999. The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell. Microbiol. 1, 183-193.
  • Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G., Bäumler, A. J., 2005. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect. Immun. 73, 146-154.
  • Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-castagnoli P., 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361-367.
  • Richter-Dahlfors A., Buchan A. M., Finlay B. B., 1997. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569-580.
  • Rosenshine I., Donnenberg M. S., Kaper J. B., Finlay B. B., 1992. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11, 3551-3560.
  • Sakaguchi T., Kohler H., Gu X., Mccrmick B. A., Reinecker H. C., 2002. Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell. Microbiol. 4, 367-381.
  • Sansonetti P. J., Arondel J., Huerre M., Harada A., Matsushima K., 1999. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67, 1471-1480.
  • Skoudy A., Mounier J., Aruffo A., Ohayon H., Gounon P., Sansonetti P., Tran Van Nhieu G., 2000. CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell. Microbiol. 2, 19-33.
  • Vallance B. A., Finlay B. B., 2000. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U S A. 97, 8799-8806.
  • Watarai M., Funato S., Sasakawa C., 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183, 991-999.
  • Yi J. H., Ni R. Y., Luo D. D., Li S. L., 1999. Intestinal flora translocation and overgrowth in upper gastrointestinal tract induced by hepatic failure. World J. Gastroenterol. 5, 327-329.
  • Yrlid U., Svensson M., Hakansson A., Chambers B. J., Ljunggren H. G., Wick M. J., 2001. In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infect. Immun. 69, 5726-5735.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.