Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 1-2 | 127-134
Article title

Bioinformatyka w poszukiwaniu nowych leków

Title variants
Bioinformatics in search of novel drugs
Languages of publication
In the process of novel drugs creation, today's pharmaceutical industry applies a whole spectrum of advanced research methods for elucidation of disease mechanisms, finding and selection of the right points of therapeutic intervention, designing a proper means of intervention (drug candidate), evaluation of safety and efficacy of the candidate and evaluation of the drug in clinical trials. At each stage of this complicated process, the computational techniques of biology, herein collectively called "bioinformatics", are an indispensable element of the research toolkit. In this article, are discussed the most common applications of bioinformatics, and challenges posed by the development of biology and medicine, as well as the evolving model of the drug discovery process
Physical description
  • Bujnicki J. M., 2005. Przewidywanie struktury białek: podejście boltzmannowskie i darwinowskie Kosmos 54, 155-162.
  • Cavasotto C. N., Phatak S. S. 2009. Homology modeling in drug discovery: current trends and applications. Drug Discov Today.
  • Couzin-Frankel J., 2009. Genetics. The promise of a cure: 20 years and counting. Science 324, 1504-1507.
  • Dowsett M., Dunbier A. K., 2008. Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin. Cancer Res. 14, 8019-8026.
  • Ekins S., Nikolsky Y., Bugrim A., Kirillov E., Nikolskaya T., 2007. Pathway mapping tools for analysis of high content data. Methods Mol. Biol. 356, 319-350.
  • Gresham V., McLeod H. L., 2009. Genomics: applications in mechanism elucidation. Adv. Drug Deliv. Rev. 61, 369-374.
  • Hackett N. R., Heguy A., Harvey B. G., O'connor T. P., Luettich K., Flieder D. B., Kaplan R., Crystal R., G., 2003. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am. J. Respir. Cell. Mol. Biol. 29, 331-343.
  • Heist R. S., Christiani D., 2009. EGFR-targeted therapies in lung cancer: predictors of response and toxicity. Pharmacogenomics 10, 59-68.
  • Hoffmann R., Valencia A., 2003. Life cycles of successful genes. Trends Genet. 19, 79-81.
  • Holbrook J. D., Sanseau P., 2007. Drug discovery and computational evolutionary analysis. Drug Discov. Today. 12, 826-832.
  • Jenwitheesuk E., Horst J. A., Rivas K. L., Van Voorhis W. C., Samudrala R., 2008. Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol. Sci. 29, 62-71.
  • Jones S., Zhang X., Parsons D. W., Lin J. C., Leary R. J., Angenendt P. i współaut., 2008. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321, 1801-1806.
  • Mai V., Draganov P. V., 2009. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J., Gastroenterol. 15, 81-85.
  • O'Keefe S., J. 2008. Nutrition and colonic health: the critical role of the microbiota. Curr. Opin. Gastroenterol. 24, 51-58.
  • Osborne J. D., Zhu L. J., Lin S. M., Kibbe W. A., 2007. Interpreting microarray results with gene ontology and MeSH. Methods Mol. Biol. 377, 223-242.
  • Pawłowski K., 2008. Uncharacterized/hypothetical proteins in biomedical 'omics' experiments: is novelty being swept under the carpet? Brief Funct. Genomic Proteomic 7, 283-290.
  • Pawłowski K., Lepisto M., Meinander N., Sivars U., Varga M., Wieslander E., 2006. Novel conserved hydrolase domain in the CLCA family of alleged calcium-activated chloride channels. Proteins 63, 424-439.
  • Pennisi E., 2008. Personal genomics. Number of sequenced human genomes doubles. Science 322, 838.
  • Plewczyński D., Rychlewski L. 2009. Meta-basic estimates the size of druggable human genome. J Mol Model. 15, 695-699
  • Proell M., Riedl S. J., Fritz J. H., Rojas A. M., Schwarzenbacher R., 2008. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3, e2119.
  • Sams-Dodd F., 2006. Drug discovery: selecting the optimal approach. Drug Discov. Today 11, 465-472.
  • Shekhar C., 2008. In silico pharmacology: computer-aided methods could transform drug development. Chem. Biol. 15, 413-414.
  • Smith P. J., Khan I. A., Errington R. J., 2009. Cytomics and cellular informatics--coping with asymmetry and heterogeneity in biological systems. . Drug Discov. Today 14, 271-277.
  • Wiley H. S., Shvartsman S. Y., Lauffenburger D. A., 2003. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell. Biol. 13, 43-50.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.