Preferences help
enabled [disable] Abstract
Number of results
2008 | 57 | 1-2 | 67-83
Article title

Funkcja tkanek przewodzących: zaopatrzenie w substancje pokarmowe i udział w koordynacji procesów w roślinach

Title variants
The role of conductive system in nutrient supply and coordination of plant
Languages of publication
The review presents actual knowledge of the role of conductive system (phloem and xylem) in plants. Conductive system transfer organic and inorganic products of absorbed nutrients and photoassimilates. Far distance transport of water and ions as well as various metabolites and phytohormones also take plays in the phloem in interaction with the xylem. Phloem functions as superhighway of information by transporting signalling molecules (hormones, proteins, mRNAs and not coded RNAs) to different plant organs. The movement of these macromolecules from companion cells into sieve tubes occurs via plasmodesmata and involves selectively regulated mechanisms. Some proteins and RNAs in the sieve tubes are non-cell autonomous molecules. Therefore it may be concluded that phloem takes part in long distance communication between different plant organs. It allows plant to respond efficiently to ontogenetic changes and external conditions as well as to coordinate transport and distribution of resources required in various proportion for growth and development. It is stressed, that understanding of function of conductive systems may be relevant for modelling of carbon partitioning between competing sinks and finally of plant growth.
Physical description
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, Szkoła Główna gospodarstwa Wiejskiego, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Andersen P. C., Brodbeck B. V., 1989. Diurnal and temporal changes in the chemical profile of xylem exudate from Vitis rotundifolia. Physiol. Plant. 75, 63-70.
  • Ayre B. G., Keller F., Turgeon., 2003. Symplastic continuity between companion cells and the translocation stream: long-distance transport is controlled by retention and retrieval mechanism in the phloem. Plant Physiol. 131, 1518-1528.
  • Baulcombe D., 2002. RNA silencing. Current Biol. 12, 82-84.
  • Beveridge C. A., Murfet I. C., Kerhoas L., Sotta B., Miginiac E., Rameau C., 1997. The shoot controls zeatin ribose export from pea roots. Evidence from the branching mutant rms4. Plant J. 11, 339-345.
  • Brugiere N., Dubois F., Limami A. M., Lelandais M., Roux Y., Sangwan R. S., Hirel B., 1999. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell. 11, 1995-2011.
  • Buhtz A., Kolasa A., Arlt K., Walz C., Kehr J., 2004. Xylem sap protein composition is conserved among different plant species. Planta 219, 610-618.
  • Chailakhyan M. K., 1968. Internal factors of plant flowering. Annu. Rev. Plant Physiol. 19, 1-36.
  • Citovsky V., Zambrysky P., 2000. Systemic transport of RNA in plants. Trends Plant Sci. . 5, 52-54.
  • Corbesier L., Coupland G., 2006. The quest for florigen: a review of recent progress. J. Exp. Bot. 57, 3395-3403.
  • De la Barrera E., Nobel P. S., 2004. Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci. 9, 65-69.
  • Ding B., Itaya A., Qi Y., 2003. Symplasmic protein and RNA traffic: regulatory points and regulatory factors. Cur. Opin. Plant Biol. 6, 596-602.
  • Fromm J., Fei H., 1998. Electrical signaling and gas exchange in maize plants of draying soil. Plant Sci. 132, 203-213.
  • Fujimaki S., Fujiwara T., Hayashi H., 2000. A new method for direct introduction of chemicals into single sieve tube of intact rice plants. Plant Cell Physiol. 41, 124-128.
  • Gaupels F., KNAUER T., Van Bel A. J. E., 2008. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy. J. Plant Physiol. 165, 95-103.
  • Hamburger D., Rezzonico E., Macdonald-comber Petetot J., Somereville C., Poirier Y., 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14, 889-902.
  • Hayashi H., Fukuda A., Suzui N., Fujimaki S. 2000. Proteins in the sieve element-companion cell complexes: their detection, localization and possible functions. Aust. J. Plant Physiol. 27: 489-496.
  • Henton S. M., Greaves A. J., Piller G. J., Minchin P. E. H., 2002. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube. J. Exp. Bot. 53, 1411-1419.
  • Holbrook N. M., Zwieniecki M. A., 2005. Integration of long distance transport system in plants: perspectives and prospects for future research. [W:] Vascular transport in plants. Holbrook N. M., Zwieniecki M. A. (red.) Elsevier Academic Press. 537-545.
  • Howe G. A., 2004. Jasmonate as signals in the wound response. J. Plant Growth Regul. 23, 223-237.
  • Imaizumi T., Kay S. A., 2006. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550-557.
  • Imlau A., Truernit E., Sauer N., 1999. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissue. Plant Cell 11, 309-322.
  • Iwai H., Usui M., Hoshino H., Kamada H., Matsunga T., Kakegawa K., Ishii T., Satoh S., 2003. Analysis of sugar in squash xylem sap. Plant Cell Physiol. 44, 582-587.
  • Jackson D., 2000. Opening up the communication channels: recent insight into plasmodesmal function. Cur. Opin. Plant Biol. 3, 394-399.
  • Jörgensen R. A., Atkinson R. G., Forster R. L. S., Lucas W. J. 1998. An RNA-based information superhighway in plants. Science. 279: 1486-1487.
  • Kehr J., 2006. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J. Exp. Bot. 57, 767-774.
  • Kehr J., Buhtz A., 2008. Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59, 85-92.
  • Kim M., Canio W., Kesslers., Sinhan., 2001. Developmental changes due to long-distance movement of a homeobox fusion transport in tomato. Science 293, 287-289.
  • Knoblauch M., van Bel A. J. E., 1998 Sieve tubes in action. Plant Cell. 10, 35-50.
  • Koch K. E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509-540.
  • Lin M. K., Belanger H., Lee Y. J., Varkonyi-gasic E., Taoka K. I., Miura E., Xocontsle-cazares B., Gendler K., Jorgens R. A., Phinney B., Lough T. J., Lucas W. J., 2007. Flowering locus T protein may act as the long-distance florigen-signal in the Cucurbitis. Plant Cell 19, 1488-1506.,
  • Lough T. J., Lucas W. J., 2006. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203-232.
  • Lucas W. J., 1995. Plasmodesmata: intercellular channels for macromolecular transport in plants. Cur. Opin. Cell Biol. 7, 673-680.
  • Lucas W. J., Wolf S., 1999. Connections between virus movement, macromolecular signaling and assimilate allocation. Cur. Opin. Plant Biol. 2, 192-197.
  • Lucas W. J., Yoo B. C., Kragler F., 2001. RNA as a long-distance information macromolecule in plants. Mol. Cell Biol. 2, 849-857.
  • Mengel K., Kirkby E. A., Kosegarten H., Appel T., 2001. Principles of plant nutrition. Kluwer Acad. Publishers.
  • Minchin P. E. H., Lacointe A., 2005. New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol. 166, 771-779.
  • Minchin P. E. H., Thorpe M. R., 2003. Using the short-lived isotope 11C in mechanistic studies of photosynthate transport. Func. Plant Biol. 30, 831-841.
  • Minchin P. E. H., Thorpe M. R., 1996. What determines carbon partitioning between competing sink?. J. Exp. Bot. 47, 1293-1296.
  • Morandi B., Reigerm., Grappadellil C. 2007. Vascular flows and transpiration affects peach (prunus persica Batsch. ) fruit daily growth. J. Exp. Bot. 58, 3941-3947.
  • Münch E. 1930. Die Stoffbewegungen in der Pflanze. Jena. Verlag von Gustav Fischer.
  • Nowakowska P., Kopcewicz J. 2006. Symplastowy transport białek i RNA u roślin. Post. Biol. Kom. 33, 473-491.
  • Omid A., Keilin T., Glass A., Leshowitz D., Wolf S., 2007. Characterization of phloem-sape transcription profile in melon plants. J. Exp. Bot. 58, 3645-3656.
  • Oparka K. J., Cruz S. S. 2000. The great escape: phloem transport and unloading of macromolecules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 323-347.
  • Oparka K. J., Turgeon R., 1999. Sieve elements and companion cell - traffic control centers of the phloem. Plant Cell 11, 730-739.
  • Peuke A. D., Rokitta M., Zimmermann U., Schreiber L., Haase A., 2001. Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry Plant Cell Env. 24, 491- 503.
  • Poirier Y., Thoma S., Somerville C., Schiefelbein J., 1991. A mutant of Arabidopsis deficient in xylem loading phosphate. Plant Physiol. 97, 1087-1093.
  • Qi Y., Pelissier T., Itaya A., Hunt E., Wassenegger M., Ding B., 2004. Direct role of a viroid RNA motif in mediating directional RNA traffficking across a specific cellular boundary. Plant Cell 16, 1741-1752.
  • Rahayu Y. S., Walch-liu P., Neumann G., Romheld V., Von Wiren N., Bangrth F. 2005. Root-derived cytokinins as long-distance signals for NO3- induced stimulation of leaf growth. J. Exp. Bot. 56, 1143-1152.
  • Romberger J. A., Hejnowicz Z., Hill J. F., 1993. Plant structure: function and development. Springer Verlag. Berlin.
  • Ruiz-Medrano R., Moya J. H., Xoconstle-cazares B., Lucas W. J. 2007. Influence of cucumber mosaic virus infection on the mRNA population present in the phloem translocation stream of pumpkin plants. Func. Plant Biol. 34, 292-301.
  • Ruiz-Medrano R., Xoconostle-cazares B., Lucas W. J. 2001. The phloem as a conduit for inter-organ communication. Cur. Opin. Plant Biol. 4: 202-209.
  • Sakakibara H., 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431-349.
  • Sakuta C., Satoh S., 2000. Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber. Plant Cell Physiol. 41, 627-638.
  • Schobert C., Baker L., Szederkényi J., Grossmann P., Komor E., Hayashi H., Chino M., Lucas W. J. 1998. Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta. 206: 245-253.
  • Scofield G. N., Hirose T., Aoki N., Furbank R. T. 2007. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J. Exp. Bot. 58, 3155-3169.
  • Shulaev V., Leon J., Raskin I., 1995. Is salicylic acid translocated signal of systemic acquired resistance in tobacco? Plant Cell. 7: 1691-1701.
  • Sowiński P. 1999. Transport of photoassimilates in plants under unfavourable evironmental conditions. Acta Phys. Plant. 21. 75-85.
  • Sowiński P. 2002. Plazmo,desmy, jako element systemu komunikacji w roślinach. Post. Biol. Kom. . 29, 627-635.
  • Sowiński P., 2003. Rurki sitowe - fenomen funkcjonalności. Post. Biol. Kom. 30, 619-633.
  • Starck Z., 2003. Transport i dystrybucja substancji pokarmowych w roślinach. Wydawnictwo SGGW.
  • Starck Z., 2004. Plastyczność współdziałania metabolizmu azotu i węgla w niekorzystnych warunkach środowiska. Zesz. Problem. Post. Nauk Roln. 496, 85-102.
  • Starck Z., 2006a. Role of conducting systems in the transduction of long-distance stress signals. Acta Physiol. Plant. 28, 289-301.
  • Starck Z., 2006b. Różnorodne funkcje węgla i azotu w roślinach. Kosmos 55, 243-257.
  • Starck Z., 2008. Stresy wynikające z nieprawidłowego odżywiania roślin azotem. Post. Nauk Roln. 332, 27-42.
  • Szwejkowska-kulińska Z., Szarzyńska B. 2007. Nagroda Nobla 2006 za fundamentalne odkrycia w regulacji ekspresji genów u eucariotów. Post. Biol. Kom. 34, 3-13.
  • Takei K., Ueda N., Aoki K., Kuromori T., Hirayama T., Shinozaki K., Yamaya T., Sakakibara H., 2004. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol. 45, 1053-1062.
  • Thorpe M., Minchin P., Gould N., Mcqueen J., 2005. The stem apoplast: a potential communication channel in plant growth regulation. [W:] Vascular Transport in Plants. Holbrook N. M., Zwieniecki M. A., (red.) Elsvier Academic Press, 201-220.
  • van Bel A. J. E., 2003. The phloem, a miracle of ingenuity. Plant Cell Environ. 26: 125-149.
  • van Bel A. J. E., Gaupels F., 2004. Pathogen-induced resistance and alarm signals in the phloem. Molec. Plant Pathol. 5, 495-504.
  • van Bel A. J. E., Hafke J. H., 2005, Physiochemical determinants of phloem transport. [W:] Vascular transport in plants. Holbrook N. M., Zwieniecki M. A., (red.) Elsvier Academic Press, 19-44.
  • van Bel A. J. E., Hess P. H. 2008. Hexoses as phloem transport sugars : the end of a dogma. J. Exp. Bot. 59: 261-272.
  • van Bel A. J. R., Ehlers K., Knoblauch M. 2002. Sieve elements caught in the act. Trends Plant Sci. 7: 126-132.
  • Voinnet 0., Lederer C., Baulcombe D. C., 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana lenthamiana. Cell 103, 157-167.
  • Volk G. M., Franceschi V. R., 2000. Localization of calcium channel-like protein in the sieve element plasma membrane. Aust. J. Plant Physiol. 27, 779-786.
  • Walz C., Juenger M., Schad M., Kehr J., 2002. Evidence for the presence and activity of complete antioxidant defence system in mature sieve tubes. Plant J. 31, 189-197.
  • Wilkinson S., Bacon M. A., Davies W. J., 2007. Nitrate signalling to stomata and growing leaves: interaction with soil drying, ABA, and xylem sap pH in maize. J. Exp. Bot. 58, 1705-1716.
  • Will T., van Bel A. J. E., 2006, Physical and chemical interaction between aphids and plants. J. Exp. Bot. 57. 729-737.
  • Włodowska L., 1972. Udział źdźbła w kształtowaniu się plonu pszenicy. Praca doktorska. Katedra Fizjologii Roślin S. G. G. W.-WARSZAWA.
  • Wojciechowski W., Kęsy J., Kopcewicz J., 2007. Florigen - legenda czy rzeczywistość. Post. Biol. Kom. . 34, 31-47.
  • Wu X., Weigel D., Wigge P. A., 2002, Signaling in plants by intercellular RNA and protein movement. Gen. Develop. 16, 151-158.
  • Zambryski P., Crawford K., 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol. 16, 393-421.
  • Zdunek E., Lips S. H., 2001. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J. Exp. Bot. 52: 1269-1276.
  • Zeevaart J. A. D., 2006. Florigen coming of age after 70 years. Plant Cell. 18, 1783-1789.
  • Zhu Y., Qi Y., Xun Y., Owens R., Ding B., 2002. Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol. 130, 138-146.
  • Ziegler H., 1975. Nature of transported substances. [W:] Transport in Plants. Phloem transport. Zimmermann M. H., Milburn J. A. (red.). Springer Verlag, 59-100.
  • Zimmermann M. H., Ziegler H., 1975. List of sugars and sugar alcohol's in sieve-tube exudates. Encyclopedia Plant Physiol. New series. tom 1, Transport in Plants. Phloem transport. (red.) Zimmermann M. H., Milburn J. A., 480-503.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.