Preferences help
enabled [disable] Abstract
Number of results
2008 | 57 | 1-2 | 53-65
Article title

Kurkumina - od medycyny naturalnej do kliniki

Title variants
Curcumin - from traditional medicine to the clinic
Languages of publication
Curcumin (diferuloylmethane), a polyphenolic compound derived from turmeric, known as a spice and food-coloring agent, has been used for centuries to treat various illnesses. For the last few decades, extensive work has been done to establish the biological activities and pharmacological actions of curcumin. Curcumin possesses diverse pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, pro-apoptotic and antiangiogenic. It is a well-known chemopreventive agent with potent anticarcinogenic activity in a wide variety of tumor cells. Moreover, it is known for antiarthritic and neuroprotective properties with a big potential role in the treatment of Alzheimer's disease. Curcumin has an outstanding safety profile and its lack of toxicity has been documented in the Phase I and II clinical trials. Although curcumin is poorly absorbed after ingestion and its low systemic bioavailability seems to limit the potential effects, multiple studies have documented that even low levels of physiologically achievable concentrations of curcumin may be sufficient for its chemopreventive and therapeutic activity against various human diseases. Recently, numerous approaches have been undertaken to improve the bioavailability of curcumin. This review summarizes the pleiotropic effects of curcumin and describes the recently identified molecular targets of curcumin.
Physical description
  • Instytut Biologii Doświadczalnej PAN im. M. Nenckiego, Pasteura 3, 02-093 Warszawa, Polska
  • Instytut Biologii Doświadczalnej PAN im. M. Nenckiego, Pasteura 3, 02-093 Warszawa, Polska
  • Aggarwal B. B., Shishodia S., Sandur S. K., Pandey M. K., Sethi G., 2006. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72, 1605-1621.
  • Aggarwal B. B., Sundaram C., Malani N., Ichikawa H., 2007. Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1-75.
  • Anto R. J., Mukhopadhyay A., Denning K., Aggarwal B. B., 2002. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23, 143-150.
  • Aoki H., Takada Y., Kondo S., Sawaya R., Aggarwal B. B., Kondo Y., 2007. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol. 72, 29-39.
  • Balasubramanyam K., Varier R. A., Altaf M., Swaminathan V., Siddappa N. B., Ranga U., Kundu T. K., 2004. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163-51171.
  • Baldwin A. S., 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-683.
  • Bielak-Żmijewska A., Koronkiewicz M., Skierski J., Piwocka K., Radziszewska E., Sikora E., 2000. Effect of curcumin on the apoptosis of rodent and human nonproliferating and proliferating lymphoid cells. Nutr. Cancer. 38, 131-138.
  • Bielak-Żmijewska A., Piwocka K., Magalska A., Sikora E., 2004. P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother. Pharmacol. 53, 179-185.
  • Cheng A. L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Ming-Shiang W., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y., 2001. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 21, 2895-2900.
  • Choi H., Chun Y. S., Kim S. W., Kim M. S., Park J. W., 2006. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol. Pharmacol. 70, 1664-1671.
  • Cipriani B., Borsellino G., Knowles H., Tramonti D., Cavaliere F., Bernardi G., Battistini L., Brosnan C. F., 2001. Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation. Immunology 167, 3454-3462.
  • Duvoix A., Blasius R., Delhalle S., Schnekenburger M., Morceau F., Henry E., Dicato M., Diederich M., 2005. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 223, 181-190.
  • Ireson C., Orr S., Jones D. J., Verschoyle R., Lim C. K., Luo J. L., Howells L., Plummer S., Jukes R., Williams M., Steward W. P., Gescher A., 2001. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 61, 1058-1064.
  • Joza N., Susin S. A., Daugas E., Stanford W. L., Cho S. K., Li C. Y., Sasaki T., Elia A. J., Cheng H. Y., Ravagnan L., Ferri K. F., Zamzami N., Wakeham A., Hakem R., Yoshida H., Kong Y. Y., Mak T. W., Zuniga-Pflucker J. C., Kroemer G., Penninger J. M., 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554.
  • Kang J., Chen J., Shi Y., Jia J., Zhang Y., 2005. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem. Pharmacol. 69, 1205-1213.
  • Kang S. K., Cha S. H., Jeon H. G., 2006. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 15, 165-174.
  • Karin M., 1999. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18, 6867-6874.
  • Karunagaran D., Rashmi R., Kumar T. R., 2005. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets 5, 117-129.
  • Kouzarides T, 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176-1179.
  • Kunnumakkara A. B., Guha S., Krishnan S., Diagaradjane P., Gelovani J., Aggarwal B. B., 2007. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 67, 3853-3861.
  • Lampe V., Milobedzka J., Kostanecki S. V., 1910. Berichte 43, 2163.
  • Lao C. D., Ruffin M. T., Normolle D., Heath D. D., Murray S. I., Bailey J. M., Boggs M. E., Crowell J., Rock C. L., Brenner D. E., 2006. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 17, 6-10.
  • Li L., Braiteh F. S., Kurzrock R., 2005a. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104, 1322-1331.
  • Li X. G., Chen Y., Wu Q., Liu H. L., 2005b. Effects of curcumin on the acetylation of histone H3, P53 and the proliferation of NB4 cells. Zhonghua Xue Ye Xue Za Zhi 26, 551-553.
  • Li X. G., Chen Y., Wu Q., Sun C. Y., 2006. Effect of curcumin on acetylation of histone H3 in human lymphoma cell line Raji. Ai Zheng 25, 582-586.
  • Lim G. P., Chu T., Yang F., Beech W., Frautschy S. A., Cole G. M., 2001. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370-8377.
  • Limtrakul P., Anuchapreeda S., Buddhasukh D., 2004. Modulation of human multidrug-resistance DR-1 gene by natural curcuminoids. BMC Cancer 4, 13.
  • Lin Y. G., Kunnumakkara A. B., Nair A., Merritt W. M., Han L. Y., Armaiz-Pena G. N., Kamat A. A., Spannuth W. A., Gershenson D. M., Lutgendorf S. K., Aggarwal B. B., Sood A. K., 2007. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res. 13, 3423-3430.
  • Liu H. L., Chen Y., Cui G. H., Zhou J. F., 2005. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Chung Kuo Yao Li Hsueh Pao 26, 603-609.
  • Magalska A., Sliwinska M., Szczepanowska J., Salvioli S., Franceschi C., Sikora E., 2006. Resistance to apoptosis of HCW-2 cells can be overcome by curcumin- or vincristine-induced mitotic catastrophe. Int. J. Cancer 119, 1811-1818.
  • Mohandas K. M., Desai D. C., 1999. Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian J. Gastroenterol. 18, 118-121.
  • Moragoda L., Jaszewski R., Majumdar A. P., 2001. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 21, 873-878.
  • Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B. A., Yuan J., 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
  • Pahl H. L., 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18, 6853-6866.
  • Patiar S., Harris A. L., 2006. Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endor. Relat. Cancer Suppl. 1, 61-75.
  • Piwocka K., Zablocki K., Wieckowski M. R., Skierski J., Feiga I., Szopa J., Drela N., Wojtczak L., Sikora E., 1999. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp. Cell Res. 249, 299-307.
  • Plummer S. M., Holloway K. A., Manson M. M., Munks R. J., Kaptein A., Farrow S., Howells L., 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013-6020.
  • Rahman I., Gilmour P. S., Jimenez L.A., MacNee W., 2002. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol. Cell Biochem. 234/235, 239-248.
  • Ringman J. M., Frautschy S. A., Cole G. M., Masterman D. L., Cummings J. L., 2005. A potential role of the curry spice curcumin in Alzheimer's disease. Curr. Alzheimer Res. 2, 131-136.
  • Sharma R. A., Gescher A. J., Steward W. P., 2005. Curcumin: the story so far. Eur. J. Cancer 41, 1955-1968.
  • Shishodia S., Aggarwal B. B., 2002. Nuclear factor-kappaB activation: a question of life or death. J. Biochem. Mol. Biol. 35, 28-40.
  • Shishodia S., Aggarwal B. B., 2004. Nuclear factor-κB: a friend or a foe in cancer? Biochem. Pharmacol. 68, 1071-1080.
  • Shishodia S., Singh T., Chaturvedi M. M., 2007. Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol. 595, 127-148.
  • Sikora E., Bielak-Zmijewska A., Magalska A., Piwocka K., Mosieniak G., Kalinowska M., Widlak P., Cymerman I. A., Bujnicki J. M., 2006. Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol. Cancer Ther. 5, 927-934.
  • Wolanin K., Magalska A., Mosieniak G., Klinger R., McKenna S., Vejda S., Sikora E., Piwocka K., 2006. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol. Cancer Res. 4, 457-469.
  • Yang F., Lim G. P., Begum A. N., Ubeda O. J., Simmons M. R., Ambegaokar S. S., Chen P. P., Kayed R., Glabe C. G., Frautschy S. A., Cole G. M., 2005. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.