Preferences help
enabled [disable] Abstract
Number of results
2008 | 57 | 3-4 | 331-341
Article title

Telomery - duża rola małych sekwencji

Title variants
Telomeres - a significant role of small sequences
Languages of publication
Telomeres are distal structures of eukaryotic chromosomes, which are responsible for their stability and functioning. They assure complete replication of terminal fragments of chromosomes, prevent degradation and fusion of chromosomes. Telomeres of most chordates are comprised of tandem repeats of the basic unit 5'-(TTAGGG)n-3'. The number of repeats of the basic telomeric sequence differs between the chromosomes of one and the same cell. However, in remains within the strictly determined range for a given species, for man it ranges from 2 to 30 th pairs of nucleotides. Younger cells have got longer telomeres whereas the telomeres of older cells are shorter. Cytogenetic studies on telomeric regions of chromosomes have gained significance since the moment of the discovery that this chromosomal fragment actively participates in the process of cancer development, cell ageing and apoptosis. Telomeres consist of non-coding DNA sequences. They contain no genes and they code no proteins but their role in medicine, genetics and evolutionary studies is becoming more and more significant.
Physical description
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Ashley T., Ward D. C., 1993. A hot spot of recombination coincides with an intersticial telomeric sequences in the Armenian hamster. Cytogenet. Cell. Genet. 62, 169-171.
  • Aviv A., 2002. Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J. Mol. Med. 80, 689-695.
  • Baird D. M., 2005. New developments in telomere length analysis. Exp. Gerontol. 40, 363-368.
  • Baird D. M., Jeffreys A. J., Royle N. J., 1995. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. EMBO J. 14, 5433-5443.
  • Bekaert S., Derradji H., Baatout S., 2004. Telomere biology in mammalian germ cells and during development. Dev. Biol. 274, 15- 30.
  • Bellamy C. O. C., 1997. p53 and apoptosis. Br. Med. Bull. 53, 522-538.
  • Bianchi A., de Lange T., 1999. Ku binds telomeric DNA in vitro. J. Biol. Chem. 274, 21223-21227.
  • Bianchi A., Smith S., Chong L., Elias P., De Lange T., 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16, 1785-1794.
  • Biessman H., Mason J. M., 1994. Telomeric repeat sequences. Chromosoma 103, 154-161.
  • Blackburn E. H., 2001. Switching and signaling at the telomere. Cell 106, 661-673.
  • Blasco M. A., 2005. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J. 24, 1095-11038.
  • Blasco M. A., 2007. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299-309.
  • Bolzan A. D., Bianchi M. S., 2006. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 612, 189-241.
  • Brown T. A., 2001. Genomy. Wydawnictwo Naukowe PWN, Warszawa.
  • Carlseder J., 2003. Telomere repeat binding factors: keeping the ends in check. Cancer Lett. 194, 189-197.
  • Cooper J. P., Nimmo E. R., Allshire R. C., Cech T. R., 1997. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744-747.
  • Coullin P., Roy L., Pellestor F., Candelier J. J, Bed-Hom B., Guillier-Gencik Z., Bernheim A., 2002. PRINS, the other in situ DNA labeling method useful in cellular biology. Am. J. Med. Genet. 107, 127-135.
  • Cross S. H., Allshire R. C., McKay S. J., Cooke H. J., 1989. Cloning of human telomeres by complementation in yeast. Nature 338, 771-774.
  • de Lange T., 2002. Protection of mammalian telomeres. Oncogene 21, 523.
  • de Lange T., 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev. 19, 2100-2110.
  • Dong C. K., Masutomi K., Hahn W. C., 2005. Telomerase: regulation, function and transformation. Crit. Rev. Oncol. Hematol. 54, 85-93.
  • Drets M. E., 2000. Instghts into the structure of the subtelomeric chromosome segments. Genet. Mol. Biol. 23, 1087-1093.
  • Dunham M. A, Neumann A. A, Fasching C. L, Reddel R. R., 2000. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447-450.
  • Fajkus J, Sykorova E, Leitch A. R., 2005. Telomeres in evolution and evolution of telomeres. Chromosome Res. 13, 469- 479.
  • Ferreira M. G., Miller K. M., Promisel Cooper J., 2004. Indecent exposure: when telomeres become uncapped. Mol Cell 13, 7-18.
  • Greider C. W., 1994. Mammalian telomere dynamics: healing, fragmentation, shortening and stabilisation. Curr. Opin. Genet. Dev. 4, 203-211.
  • Greider C. W., Blackburn E. H., 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeatsynthesis. Nature 337, 331-337.
  • Griffith J. D., Comeau L., Rosenfield S., Stansel R. M., Bianchi A., Moss H., de Lange, T., 1999. Mammalian telomeres end in a large duplex loop. Cell 97, 503-514.
  • Harley C. B., 1991. Telomere loss: Mitotic clock or genetic time bomb? Mutat. Res. 256, 271-282.
  • Harley C. B., Villeponteau B., 1995. Telomeres and telomerase in aging and cancer. Curr. Opin. Gen. Dev. 5, 249-255.
  • Harley C. B., Futcher A. B., Greider C. W., 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460.
  • Hayflick L., 2003. Living forever and dying in the attempt. Exp. Gerontol. 38, 1231-1241.
  • Hayflick L., Moorhead P. S., 1961 The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.
  • Jennings B. J., Ozanne S. E., Hales N. C., 2000. Nutrition, Oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging? Mol. Genet. Metab. 71, 32-42.
  • Kawanishi S., Oikawa S., 2004. Mechanism of telomere shortening by oxidative stress. Ann. Acad. Sci. 1019, 278-84.
  • Kennedy B. K., Gotta M., Sinclair D. A., Mills K., McNabb D. S., Murthy M., Pak S. M., Laroche T., Gasser S. M., Guarente L., 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381-391.
  • Kowalska A., Kowalik A., 2006. Telomer i telomeraza w onkogenezie. Wsp. Onk. 10, 485-496.
  • Londoño-Vallejo J. A., 2004. Telomere length heterogenity and chromosome instability. Canc. Lett. 212, 135-144.
  • Marcand S., Gilson E., Shore D., 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986-990.
  • Molenaar C., Wiesmeijer K., Verwoerd N. P., Khazen S., Eils R., Tanke H. J., Dirks R. W., 2003. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 22, 6631-6641.
  • Morin G. B., 1997. Telomere control of replicative lifespan. Exp. Geront. 32, 375-382.
  • Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R., 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci USA 85, 6622-6626.
  • Muntoni A, Reddel R. R., 2005. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, 191-196.
  • Nanda I., Schrama D., Feichtinger W., Haaf T., Schartl M., Schmid M., 2002. Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma 4, 215-227.
  • Nowis D., Gołąb J., 2001. Rola telomerów i telomerazy w progresji nowotworów. Perspektywy diagnostyczne i terapeutyczne. Post. Biol. Kom. 2, 243-261.
  • O'Connor M.S., Safari A., Liu D., Qin J., Songyang Z., 2004. The human Rap1 protein complex and modulation of telomere length. J. Biol. Chem. 279, 28585-28591.
  • Olovnikov A. M., 1973. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181-90.
  • Penkina M. V., Karpowa O. I., Bogdanov F. Yu., 2002. synaptonemal complex proteins: specyfic proteins of meiotic chromosomes. Mol. Biol. 36, 304-313.
  • Pich U., Fuchs J., Schubert I., 1996. How to Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res. 4, 207-213.
  • Pluta A.F., Zakian V. A.,1989. Recombination occurs during telomery formation in yeast. Nature 337, 429-433.
  • Reddel R. R., 2003. Alternative lenghtening of telomeres, telomerase, and cancer. Cancer Lett. 194, 155-162.
  • Rodionov A. V., 1996. Micro versus macro: a review of structure and functions of avian micro-and macrochromosomes. Rus. J. Genet. 32, 517-527.
  • Rufer N., Dragowska W., Thornbury G., Roosnek E., Lansdorp P. M., 1998. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743-747.
  • Shay J. W., Bacchetti S., 1997. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-91.
  • Shay J. W., Wright W. E., Werbin H., 1993. Loss of telomeric DNA during aging may predispose cells to cancer. Int. J. Oncol. 3, 559-563.
  • Shore D., 2001. Telomeric chromatin: replicating and wrapping up chromosome ends. Curr. Opin. Genet. Dev. 11, 189-198.
  • Skórzyńska K., Kolano J., Kocki J., Wojcierowski J., 2003. Białka TRF1/TRF2 oraz TANK1/TANK2 i ich udział w regulacji długości telomerów. Post. Biol. Kom. 30, 201-213.
  • Slijepcevic P., 1998. Telomere length regulation - a view from the individual chromosome perspective. Exp. Cell Res. 244, 268-274.
  • Slijepcevic P., 2001. Telomere length measurement by Q-FISH. Met. Cell Sci. 23, 17-22.
  • Slijepcevic P., Hande M. P., Bouffler S. D., Lansdorp P. M., Bryant P. E., 1997. Telomere length, chromatin structure and chromosome fusigenic potential. Chromosoma 106, 413-421.
  • Smogrzewska A., van Steensel B., Bianchi A., Olemann S., Schaefer M. R., Schnapp G., de Lange T., 2000. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659-1668.
  • Stansel R. M., de Lange T., Griffith J. D., 2001. T-loop assembly in vitro involves binding of TRF2 near the 30 telomeric overhang. EMBO J. 20, 5532-5540.
  • Szalata M., Słomski R., 2000. Zakończenia chromosomów: telomery, telomeraza i białka współdziałające. Post. Biol. Kom. 27, 95-117.
  • Tommerup H., Dousmanis A, de Lange T., 1994. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14, 5777-5785.
  • van Steensel B. Smogorzewska A., de Lange T., 1998. TRF2 protects human telomeres from end- to-end fusions. Cell 92, 401-413.
  • Wang F., Podell E. R., Zaug A. J., Yang Y., Baciu P., Cech T. R., Lei M., 2007. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506-510.
  • Wright W. E., Shay J. W., 1992a. Telomere positional effects and the regulation of cellular senescence. Trends Genet. 8, 193-197.
  • Wright W. E., Shay J. W., 1992b. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383-389.
  • Wu H., George K., Yang T. C., 1998. Estimate of true incomplete exchanges using fluorescence in situ hybrydization with telomere probes. Int. J. Radiat. Biol. 73, 521-527.
  • Zakian V. A., 1989. Structure and function of telomeres. Annu. Rev. Genet. 23, 579-604.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.