Preferences help
enabled [disable] Abstract
Number of results
2008 | 57 | 1-2 | 29-38
Article title

Molekularne interakcje w biofilmach bakteryjnych

Title variants
Molecular interactions in bacterial biofilms
Languages of publication
Bacterial biofilm may be defined as a community of microorganisms embedded in an exopolysaccharide matrix and attached to a surface. Formation and maturation of biofilms is connected with production of extracellular polymeric substances. In this process, microorganisms also secrete specific, low molecular signaling compounds, proteins or polysaccharides and their derivatives. Structure of those compounds, synthesis regulation and the way of secretion are different for gram-negative and gram-positive bacteria. The quorum-sensing signaling compounds for gram negative bacteria are acyl homoserine lactones, for gram positive - tioesters containing octapeptides and gamma-butyrolactones, while for eukaryotic cells - furanone derivatives. Molecular interactions between the bacteria themselves, the bacteria in biofilm and the surface, mechanisms of initial attachment, development and change of the biofilm phenotype, and genetic regulation, are important to elucidate the impact of biofilms on medical, industrial, environmental applications.
Physical description
  • Baj J., Markiewicz Z., 2006. Biologia molekularna bakterii. Wydawnictwo Naukowe PWN.
  • Czaczyk K., Wojciechowska K., 2003. Tworzenie biofilmów bakteryjnych - istota zjawiska i mechanizmy oddziaływań. Biotechnologia 3, 180-192.
  • Czajkowski R., Jafra S., 2006. Enzymatyczna degradacja laktonów acyl-L-homoseryny i jej potencjalne wykorzystanie w biokontroli i hamowaniu rozwoju infekcji. Biotechnologia 2, 49-64.
  • D'angelo-picard C., Faure D., Penot I., Dessaux Y., 2005. Diversity of N-acyl homoserine lactone - producing and degrading bacteria in soil and tabacco rhizosphere. Environ. Microbiol. 7, 1796-1808.
  • Davey M. E., O'toole G. A., 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Molec. Biol. Rev. 64, 847-867.
  • Donlan R. M., 2002. Biofilms: microbial life on surface. Emerg. Infect. Dis. 7, 277-281.
  • Dunne W. M., 2002. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15, 155-166.
  • Guina T., Purvina S. O., Yi E. C., Eng J., Goodlett D. R., Aebersold R., Miller S. I., 2003. Quantitave proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 100, 2771-2776.
  • Holden M. T. G., Williams P., 2001. Quorum Sensing. Encyclopedia of Life Sciences, Nature Publishing Group,
  • Kim M. H., Choi W.-c., Kang H. o., Lee J. S., Kang B. S., Kim K.-j., Derewenda Z. S., Oh T.-k., Lee C. H., Lee J.-K., 2005. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102, 17606-17611.
  • Kjelleberg S., Molin S., 2002. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol. 5, 254-258.
  • Mihoub F., Mistou M. Y., Guillot A., Leveau J. Y., Abdelkader B., Billaux F., 2003. Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int. J. Food Microbiol. 89, 171-184.
  • Morikawa M., 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J. Biosci. Bioeng. 101, 1-8.
  • O'toole G. A., 2003. To build a biofilm. J. Bacteriol. 185, 2687-2689.
  • O'toole G. A., Kolter R., 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28, 449-461.
  • Oosthuizen M. C., Steyn B., Lindsay D., Brozel V. S., Von Holy A., 2001. Novel method for the proteomic investigation of dairy - associated Bacillus cereus biofilm. FEMS Microbiol. Lett. 194, 47-51.
  • Oosthuizen M. C., Steyn B., Theron J., Cossett P., Lindsay D., Von Holy A., Brozel V. S., 2002. Proteome analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Environ. Microbiol. 68, 2770-2780.
  • Pawlik K., Kuczek K., 2002. Niskocząsteczkowe bakteryjne cząsteczki sygnałowe. Biotechnologia 4, 165-175.
  • Pratt L. A., Kolter R., 1999. Genetic analyses of bacterial biofilm formation. Curr. Opin. Microbiol. 2, 598-603.
  • Shirtliff M. E., Madey J. T., Camper A. K., 2002. Molecular interactions in biofilms. Chem. Biol. 9, 859-871.
  • Taga M. E., Bassler B. L., 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100, 14549-14554.
  • Tateda K., Ishii Y., Horikawa M., Matsumoto T., Miyairi S., Pechere J. C., Standiford T. J., Ishiguro M., Yamaguchi K., 2003. The Pseudomonas aeruginosa autoinductors N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71, 5785-5793.
  • Taylor M. W., Schupp P. J., Baillie H. J., Charlton T. S., De Nys R., Kjelleberg S., Steinberg P. D., 2004. Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Appl. Environ. Microbiol. 70, 4387-4389.
  • Vuong C., Gerke C., Somerville G. A., Fischer E. R., Otto M., 2003. Quorum 0 Sensing control of biofilm factors in Staphylococcus epidermis. J. Infect. Dis. 188, 706-718.
  • Watnick P. I., Kolter R., 2000. Biofilm, city of microbes. J. Bacteriol. 182, 2675-2679.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.