Preferences help
enabled [disable] Abstract
Number of results
2008 | 57 | 1-2 | 19-28
Article title

Mikrochimeryzm, płeć i choroby autoimmunologiczne

Title variants
Microchimerism, gender and autoimmune diseases
Languages of publication
In general, autoimmune diseases affect women more often than men. Sex hormones and X chromosome genes are hypothesized to underlie this disproportion. Moreover, women are exposed to fetal cells trafficking from fetus to maternal circulation during pregnancy. These cells persisting in mother’s organism for years are defined as fetal microchimerism. Paralelly, fetus receives maternal cells which can persist into adult life as maternal microchimerism. Although mechanism of this phenomena is still not known, it is considered to be common among healthy people. Higher levels of microchimerism among women with scleroderma led to a hypothesis postulating its contribution to disease development. Furthermore, microchimerism was explored in other autoimmune diseases. More recent reports on capacity of microchimeric cells to differentiate and regenerate damaged tissue necessitate reconsideration of the first theories and give hope for new treatment strategies.
Physical description
  • Laboratoire Immunogénétique de la Polyarthrite Rhumatoide INSERM, 163, Aav de Luminy, Marsylia, Francja
  • Aractingi S., Berkane N., Bertheau P., Le Goue C., Dausset J., Uzan S., Caro sella E. D., 1998. Fetal DNA in skin of polymorphic eruptions of pregnancy. Lancet 352, 1898–1901.
  • Ariga H., Ohto H., Busch M. P., Imamura S., Watson R., Reed W., Lee T. H., 2001. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41, 1524–1530.
  • Artlett C. M., Welsh K. I., Black C. M., Jimenez S. A., 1997. Fetal-maternal HLA compatibility confers susceptibility to systemic sclerosis. Immunogenetics 47, 17–22.
  • Bauer M., Orescovic I., Schoell W. M., Bianchi D. W., Pertl B., 2002. Detection of maternal deoxyribonucleic acid in umbilical cord plasma by using fluorescent polymerase chain reaction amplification of short tandem repeat sequences. Am. J. Obstet. Gynecol. 186, 117–120.
  • Bianchi D. W., Zickwo lf G. K., Weil G. J., Sylvester S., Demaria M. A., 1996. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl. Acad. Sci. USA 93, 705–708.
  • Boguniakubik K., Suchnicki K., Lange A., 2003. HLA– DR11 in addition to donor age, gender, and major blood group incompatibility influence the incidence of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Transplant. Proc. 35, 1556–1558.
  • Byrne B. M., Crow ley A., Taulo F., Anthony J., O’leary J. J., O’herlihy C., 2003. Fetal DNA Quantitation in Peripheral Blood Is Not Useful as a Marker of Disease Severity in Women with Preeclampsia. Hypertens. Pregnancy 22, 157–164.
  • Carro ll M., 2001. Innate immunity in the etiopathology of autoimmunity. Nat. Immunol. 2, 1089–1090.
  • Cha D., Khosro tehrani K., Kim Y., Stro h H., Bianchi D. W., Johnson K. L., 2003. Cervical cancer and microchimerism. Obstet. Gynecol 102, 774–781.
  • Chatila T., 2005. Role of T cells in human diseases. J. Allergy Clin. Immunol. 116, 949–959.
  • Christner P. J., Artlett C. M., Conway R. F., Jimenez S. A., 2000. Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheum. 43, 2598–2605.
  • Cor pechot C., Barb u V., Chazouilleres O., Poupon R., 2000. Fetal microchimerism in primary biliary cirrhosis. J. Hepatol. 33, 696–700.
  • Cutolo M., Balleari E., Giusti M., Intra E., Accardo S., 1991. Androgen replacement therapy in male patients with rheumatoid arthritis. Arthritis Rheum. 34, 1–5.
  • Cutolo M., Capellino S., Sulli A., Serioli B., Secchi M. E., Villaggio B., straub R. H., 2006. Estrogens and autoimmune diseases. Ann. NY Acad. Sci. 1089, 538–547.
  • Dale E., Davis M., Faustman D. L., 2006. A role for transcription factor NF-kappaB in autoimmunity: possible interactions of genes, sex, and the immune response. Adv. Physiol. Educ. 30, 152– 158.
  • Gleicher N., Weiner R., Vietzke M., 2006. The impact of abnormal autoimmune function on reproduction: Maternal and fetal consequences. J. Autoimmun. 27, 161–165.
  • Gould D. S., Auchincloss Jr H., 1999. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today 20, 77–82.
  • Hor i S., Nomura T., sakaguchi S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 5069, 1057–1061.
  • Invernizzi P., De Andr eis C., Sirchia S. M., Battezzati P. M., Zuin M., Rossella F., Perego F., Bignotto M., Simoni G., Podd a M., 2000. Blood fetal microchimerism in primary biliary cirrhosis. Clin. Exp. Immunol. 122, 418–422.
  • Kaneda T., Shiraki K., Hirano K., Nagata I., 1997. Detection of maternofetal transfusion by placental alkaline phosphatase levels. J. Pediatr. 130, 730–735.
  • Khosro tehrani K., Bianchi D. W., 2005. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J. Cell Sci. 118, 1559–1563.
  • Khosro tehrani K., Guegan S., Fraitag S., Oster M., De Pro st Y., Bod emer C., Aractingi S., 2005a. Presence of Chimeric Maternally Derived Keratinocytes in Cutaneous Inflammatory Diseases of Children: The Example of Pityriasis Lichenoides. J. Invest. Dermatol. 126, 345–348.
  • Khosro tehrani K., Mery L., Aractingi S., Bianchi D. W., Johnson K. L., 2005b. Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Ann. Rheum. Dis. 64, 159–160.
  • Klintschar M., Immel U. D., Kehlen A., Schwaiger P., Mustafa T., Mannweiler S., Regauer S., Kleiber M., Hoang-vu C., 2006. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur. J. Endocrinol. 154, 237–241.
  • Kuro ki M., Okayama A., Nakamura S., Sasaki T., Murai K., Shiba R., Shinohara M., Tsubo uchi H., 2002. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren’s syndrome. Ann. Rheum. Dis. 61, 1041–1046. Arthritis Rheumat. 50, 906–914.
  • Lambert N. C., Evans P. C., Hashizumi T. L., Maloney S., Goo ley T., Furst D. E., Nelson J. L., 2000. Cutting Edge: Persistent Fetal Microchimerism in T Lymphocytes Is Associated with HLA– DQA1*0501: Implications in Autoimmunity. J. Immunol. 164, 5545–5548.
  • Lambert N. C., Lo Y. M., Erickson T. D., Tylee T. S., Guthrie K. A., Furst D. E., Nelson J. L., 2002. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 100, 2845– 2851.
  • Lambert N. C., Erickson T. D., Zhen Y., Pang J. M., Guthrie K. A., Furst D. E., Nelson J. L., 2004. Quantification of maternal microchimerism by HLA–specific real-time polymerase chain reaction: Studies of healthy women and women with scleroderma.
  • Levine R. J., Qian C., Leshane E. S., Yu K. F., England L. J., Schisterman E. F., Wataganara T., Romero R., Bianchi D. W., 2004. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol. 190, 707–713.
  • Lin H., Kao J., Hsu H., Mizokami M., Hirano K., Chen D., 1996. Least microtransfusion from mother to fetus in elective cesarean delivery. Obstet. Gynecol. 87, 244–248.
  • Lo E. S., Lo Y. M., Hjelm N. M., Thilaganathan B., 1998. Transfer of nucleated maternal cells into fetal circulation during the second trimester of pregnancy. Br. J. Haematol. 100, 605–606.
  • Lo Y. M., Lau T. K., Chan L. Y., Leung T. N., Chang A. M., 2000. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin. Chem. 46, 1301–1309.
  • Mcnallan K. T., Aponte C., El-azhary R., Mason T., Nelson A. M., Paat J. J., Crow son C. S., Reed A. M., 2007. Immunophenotyping of chimeric cells in localized scleroderma. Rheumatology (Oxford) 46, 398–402.
  • Mosca M., Curcio M., Lapi S., Valentini G., D’angelo S., Rizzo G., Bombard ieri S., 2003. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann. Rheum. Dis. 62, 651–654.
  • Murata H., Nakauchi H., Sumida T., 1999. Microchimerism in Japanese women patients with systemic sclerosis. Lancet 354, 220.
  • Nelson J. L., 1998a. Microchimerism and autoimmune disease. N. Engl. J. Med. 338, 1224–1225.
  • Nelson J. L., 1998b. Microchimerism and the causation of scleroderma. Scand. J. Rheumatol. Suppl. 107, 10–13.
  • Nelson J. L., 2002. Microchimerism: incidental byproduct of pregnancy or active participant in human health? Trends Mol. Med. 8, 109–113.
  • Nelson J. L., Hughes K. A., Smith A. G., Nispero s B. B., Branchaud A. M., Hansen J. A., 1993. Maternal- fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis. N. Engl. J. Med. 329, 466– 471.
  • Nelson J. L., Furst D. E., Maloney S., Goo ley T., Evans P. C., Smith A., Bean M. A., Ober C., Bianchi D. W., 1998. Microchimerism and HLA– compatible relationships of pregnancy in scleroderma. Lancet 351, 559–562.
  • Nelson J. L., Gillespie K. M., Lambert N. C., Stevens A. M., Loubiere L. S., Rutledge J. C., Leisenring W. M., Erickson T. D., Yan Z., Mullarkey M. E., Boespflug N. D., Bingley P. J., Gale E. A., 2007. Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet beta cell microchimerism. Proc. Natl. Acad. Sci. USA 104, 1637–1642.
  • Olsen N. J., Kovacs W. J., 1995. Case report: testosterone treatment of systemic lupus erythematosus in a patient with Klinefelter’s syndrome. Am. J. Med. Sci. 310, 158–160.
  • Ozbalkan Z., Bagislar S., Kiraz S., Akyerli C. B., Ozer H. T., Yavuz S., Birlik A. M., Calguneri M., Ozcelik T., 2005. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum. 52, 1564–1570.
  • Pathak D., Premi S., Srivastava J., Chandy S. P., Ali S., 2006. Genomic instability of the DYZ1 repeat in patients with Y chromosome anomalies and males exposed to natural background radiation. DNA Res. 13, 103–109.
  • Reed A. M., Mcnallan K., Wettstein P., Vehe R., Ober C., 2004. Does HLA-Dependent Chimerism Underlie the Pathogenesis of Juvenile Dermatomyositis? J. Immuno. 172, 5041–5046.
  • Renne C., Ramos Lopez E., Steimle-grauer S. A., Ziolkow ski P., Pani M. A., Luther C., Holzer K., Encke A., Wahl R. A., Bechstein W. O., Usadel K. H., Hansmann M. L., Badenhoo p K., 2004. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto’s thyroiditis and Graves’ disease than in follicular adenomas. J. Clin. Endocrinol. Metab. 89, 5810–5814.
  • Sawaya H. H., Jimenez S. A., Artlett C. M., 2004. Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology (Oxford) 43, 965–968.
  • Scaletti C., Vultaggio A., Bonifacio S., Emmi L., Torricelli F., Maggi E., Romagnani S., Piccinni M. P., 2002. Th2–oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum. 46, 445–450.
  • Scaradavou A., Carr ier C., Mollen N., Stevens C., Rubinstein P., 1996. Detection of maternal DNA in placental/umbilical cord blood by locus- specific amplification of the noninherited maternal HLA gene. Blood 88, 1494–1500.
  • Schattner A. Berr ebi A., 1986. Klinefelter’s syndrome associated with autoimmune disease. J. R. Soc. Med. 40, 560.
  • Selva-o’callaghan A., Mijares-boeckh-behrens T., Prades E. B., Solans-laque R., Simeon-aznar C. P., Fonollosa-pla V., Vilard ell-tarr es M., 2003. Lack of evidence of foetal microchimerism in female Spanish patients with systemic sclerosis. Lupus 12, 15–20.
  • Socie G., Gluckman E., Caro sella E., Bro ssard Y., Lafon C.,.br ison O., 1994. Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences. Blood 83, 340–344.
  • Stevens A. M., Hermes H. M., Rutledge J. C., Buyon J. P., Nelson J. L., 2003. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 362, 1617–1623.
  • Stevens A. M., Mcdo nnell M. W., Mullarkey M. E., Pang J. M., Leisenring W., Nelson J. L., 2004. Liver biopsies from human females contain male hepatocytes in the absence of transplantation. Lab. Investigat. 84, 1603–1609.
  • Stevens A. M., Hermes H. M., Lambert N. C., Nelson J. L., Mero ni P. L., Cimaz R., 2005. Maternal and sibling microchimerism in twins and triplets discordant for neonatal lupus syndrome-congenital heart block. Rheumatology (Oxford) 44, 187–191.
  • Thomas M. R., Williamson R., Craft I., Yazdani N., Rod eck C. H., 1994. Y chromosome sequence DNA amplified from peripheral blood of women in early pregnancy. Lancet 343, 413–414.
  • Tod a I., Kuwana M., Tsubo ta K., Kawakami Y., 2001. Lack of evidence for an increased microchimerism in the circulation of patients with Sjogren’s syndrome. Ann. Rheum. Dis. 60, 248–253.
  • Turner J. H., Wald N., Quinlivan W. L., 1966. Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. Am. J. Obstet. Gynecol. 95, 831–833.
  • Whitacre C. C., 2001. Sex differences in autoimmune disease. Nature Immunol. 2, 777–780.
  • Yan Z., Lambert N. C., Guthrie K. A., Por ter A. J., Loubiere L. S., Madeleine M. M., Stevens A. M., Hermes H. M., Nelson J. L., 2005. Male microchimerism in women without sons: Quantitative assessment and correlation with pregnancy history. Am. J. Med. 118, 899–906.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.