PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 57 | 1-2 | 135-141
Article title

Poczwarki Chironomidae (Diptera). Adaptacje morfologiczne, behawioralne i fizjologiczne

Content
Title variants
EN
Chironomid (Diptera) pupae; morphological, behavioral and physiological adaptations
Languages of publication
PL EN
Abstracts
EN
For over two recent decades chironomid pupal exuviae instead of larvae of these dipterans have been used as good indicators (biomonitors) of water quality due to difficulties with the larvae: firstly in identifying this stage and secondly in spending much time to sort bottom samples. In turn the collection of pupal exuviae is an effective method to collect complete species assemblages and to gain knowledge on chironomid diversity. The pupal thoracic horn (respiratory organ) is an important diagnostic character used by taxonomists to separate species. Recent investigations of the chironomid thoracic horns show a significant relationship between their morphological characters and physiological and behavioural adaptation of pupae. The primitive respiratory organ of most Podonominae and Tanypodinae is a double-walled tube with a smaller or larger plastron plate (surface of intensive oxygen uptake). In turn lentic, oxyregulatory species of Chironomini (Chironominae) possess a developed plumose thoracic horns, extensive anal fringe (to perform undulatory movements of the abdomen to drive water through the silken tube), and large body size, like Chironomus. This genus inhabited environments poorer in oxygen than those inhabited by taxa with a less extensive respiratory surface and fringe and small body size (Paratendipes, Polypedilum, Microtendipes). Hemoglobin concentration in Chironomini was not correlated with its morphology: both the body size and the surface development of pupal thoracic horns. Probably the hemoglobin level reflects a fast response to short-term environmental fluctuations (oxygen), while morphological changes may be a response to a long-term adaptation to oxygen level.
Keywords
Journal
Year
Volume
57
Issue
1-2
Pages
135-141
Physical description
Dates
published
2008
Contributors
  • Katedra Ekologii i Zoologii Kręgowców Uniwersytetu Łódzkiego, Banacha 12/16, 90-237 Łódź, Polska
References
  • Ali A., 1995. Nuisance, economic impact and posibilites for control. [W:] The Chironomidae. The biology and ecology of non-biting midges. Armitage P. D., Cranston P. S., Pinder L. C. V. (red.). Chapman & Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 339-364.
  • Ali A., Ceretti G., D'Andrea F., Scattolin M., Ferrarese U. 1985. A chironomid (Diptera: Chironomidae) midge population study and laboratory evaluation of larvicides against midges inhabiting the lagoon of Venice, Italy. J. Am. Mosq. Control Assoc.1, 63-68.
  • Ali A., Frouz J., Lobinske R. J., 2002. Spatio-temporal effects of selected physico-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and man-made lake in central Florida. Hydrobiologia 470, 181-193.
  • Armitage P. D., Cranston P. S., Pinder L. C. V. (red.) 1995. The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras.
  • Brodersen K. P., Pedersen O., Lindegaard C., Hamburger K., 2004. Chironomids (Diptera) and oxy-regulatory capacity: An experimental approach to paleolimnological interpretation. Limnol. Oceanogr. 49, 1549-1559.
  • Butler M. G., 1982. Production dynamics of some arctic Chironomus larvae. Limnol. Oceanogr. 27, 728-737.
  • Cranston P. S., 1995a. Morphology. [W:] The Chironomidae. The biology and ecology of non-biting midges. Armitage P., Cranston P. S., Pinder L. C. V. (red.). Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 12-30.
  • Cranston P. S., 1995b. Medical significance. [W:] The Chironomidae. The biology and ecology of non-biting midges. Armitage P., Cranston P. S., Pinder L. C. V. (red.). Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 365-384.
  • Delettre Y. R., 1988. Chironomid wing length, dispersal ability and habitat predictability. Holarct. Ecol. 11, 166-170.
  • Dukowska M., Grzybkowska M., 2007. Reakcja bentofauny na piętrzenie. Nauka Przyr. Technol. 1,2, 65-75.
  • Fittkau E. J., 1962. Die Tanypodinae (Diptera: Chironomidae). (Die tribus Anatopyiini, Macropelopiini und Pentaneurini). Abhandlungen zur Larven Systematik der Insekten, 6, 1-453.
  • Frouz J., Mateňa J., Ali A. 2003. Survival strategies of chironomids (Diptera: Chironomidae) living in temporary habitats: a review. Eur. J. Entomol. 100, 459-465.
  • Galicka W., Kruk A., Zięba G., 2007. Bilans azotu i fosforu w Zbiorniku Jeziorsko. Nauka Przyr. Technol. 1, 2, 77-85.
  • Gottlieb F. J., Coffman W. P., Carmody G. R., 1974. Pupal respiratory complex of Tanypus carinatus Sublette var. (Diptera: Chironomidae). Int. J. Insect. Morphol. Embryol. 3, 147-155.
  • Grzybkowska M., 2006. Jak przetrwać w skrajnie trudnych warunkach? Adaptacje ochotek. Kosmos 55, 197-207.
  • Grzybkowska M., Dukowska M., 2002. Communities of Chironomidae (Diptera) above and below a reservoir on a lowland river: long-term study. Annls. Zool. 52, 235-247.
  • Int Panis L., Goddeeris B., Verheyen R., 1996. On the relationship between vertical micro-distribution and adaptations to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia 318, 61-67.
  • Kajak Z., 1997. Chironomus plumosus - what regulates its abundance in a shallow reservoir. Hydrobiologia 342/343, 133-142.
  • Kajak Z., 1998. Hydrobiologia-Limnologia. Ekosystemy wód śródlądowych. PWN, Warszawa.
  • Konstantinov A. S., 1958. Biologija chironomid i ich razwedene. Trudy Saratov. Otd. Kasp. Fil. 5, 1-363.
  • Langton P. H., 1989. Functional and phylogenetic interpretation of chironomid pupal structure. Acta Biol. Debr. Hung. 2, 247-252.
  • Langton P. H., 1991. A key to pupal exuviae of West Palaeartctic Chironomidae. Privately published by P. H. Langton, 3 st Felix Road, Ramsey Forty Foot, Cambridgeshire.
  • Langton P. H., 1995. The pupa and events leading to eclosion. [W:] The Chironomidae. The biology and ecology of non-biting midges. Armitage P., Cranston P. S., Pinder L. C. V. (red.). Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 169-193.
  • Lencioni V., 2004. Survival strategies of freshwater insects in cold environments. J. Limnol. 63, 45-55.
  • Marziali L., Lencioni V., Rossaro B., 2006. Adaptation of pupae of Chironomidae (Insecta: Diptera) to oxygen-poor habitats. Pol. J. Ecol. 54, 687-693.
  • Mateňa J., Frouz J., 2000. Distribution and ecology of Chironomus Meigen in the Czech Republic (Diptera: Chironomidae). [W:] Late 20th Century Research on Chironomidae: an Anthology from 13th International Symposium on Chironomidae. Hoffrichter O. (red.). Shaker Verlag, Aachen, 415-423.
  • Metcalfe J. L., 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environ. Pol. 60, 101-139.
  • Nolte U., 1995. From egg to imago in less than seven days: Apedilum elachistius (Chironomidae). [W:] Chironomids: From genes to ecosystems. Cranston P. (red.). CSIRO Publications, Melbourne, 177-184.
  • Oliver D. R., 1971. Life history of Chironomidae. Ann. Rev. Ent. 16, 211- 230.
  • Osmulski P., Leyko W., 1986. Structure, function and physiological role of Chironomus hemoglobin. Comp. Biochem. Physiol. 85B, 701-722.
  • Pinder L. C. V., 1995. The habitats of chironomid larvae. [W:] The Chironomidae. The biology and ecology of non-biting midges. [W:] Armitage P., Cranston P. S., Pinder L. C. V. (red.). Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 107-135.
  • Rossaro B, Solimini A., Lencioni V., Marziali L., Giacchini R., Parenti P., 2007. The relationship between body size, pupal thoracic horn development and dissolved oxygen in Chironomini (Diptera: Chironomidae). Fundam. Appl. Limnol., Arch. Hydrobiol. 169, 331-339.
  • Ruse L. P., 1995. Chironomid community structure deduced from larvae and pupal exuviae of a chalk stream. Hydrobiologia 315, 135-142.
  • Ruse L. P., 2002. Chironomid pupal exuviae as indicators of lake status. Arch. Hydrobiol. 153, 367-390.
  • Ruse L. P., Wilson R. S., 1995. Long-term assessment of water and sediment quality of the River Thames using chironomid pupal skins. [W:] Chironomids: From genes to ecosystems. Cranston P. (red.). CSIRO Publications, Melbourne, 113-124.
  • Ruse L. P., Davison M., 2000. Long-term data assessment of chironomid taxa structure and function in the River Thames. Regul. Rivers: Res. Mgmt. 16, 113-126.
  • Soponis A. R., 1980. Taxonomic composition of Chironomidae (Diptera) in a sand-bottomed stream of Northern Florida. [W:] Chironomidae. Ecology, Systematics, Cytology and Physiology. Murray D. (red.). Pergamon Press, Oxford and New York: 163-169.
  • Thienemann A., 1954. Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20, 1-834.
  • Tokeshi M., 1993. On the evolution of commensalism in the Chironomidae. Freshwat. Biol. 29, 481-489.
  • Wiederholm T. (red.), 1986. The pupae of Chironomidae (Diptera) of the Holarctic region - Keys and diagnoses. Ent. Scand. Suppl. 28, 1-482.
  • Wilson R. S., 1980. Classifying rivers using chironomid pupal exuviae. [W:] Chironomidae. Ecology, Systematics, Cytology and Physiology. Murray D. A. (red.). Pergamon Press, Oxford and New York, 209-216.
  • Wilson R. S., 1992. Monitoring organic enrichment of rivers using chironomid pupal exuviae assemblages. Neth. J. Aquat. Ecol. 26, 521-525.
  • Wilson R. S., Bright P. L., 1973. The use of chironomid pupal exuviae for characterising streams. Freshwat. Biol. 3, 283-302.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv57p135kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.