PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 56 | 1-2 | 9-25
Article title

Fakultatywna termogeneza bezdrżeniowa w regulacji temperatury ciała zwierząt stałocieplnych

Content
Title variants
EN
Facultative nonshivering thermogenesis in regulation of body temperature in endotherms
Languages of publication
PL EN
Abstracts
EN
Facultative (regulatory) nonshivering thermogenesis (NST) is a very effective way to generate heat, especially in small animals exposed to cold. It is energetically much cheaper response to cold than shivering thermogenesis or the increase in maximum metabolic rate. The thermogenic capacity of NST undergoes seasonal changes, being the highest in winter and the lowest in summer. The main cues for seasonal improvement of the capacity for NST are short photoperiod and low ambient temperature. However, not only seasonal but also daily variations in the NST capacity are possible. The latter depend on the circadian rhythm of body temperature. The NST is very important for heterotherms since it plays a fundamental role during the arousal from torpor (daily or seasonal), allowing for rapid elevation of body temperature. In placental mammals, the major source of NST is the brown adipose tissue (BAT). Thermogenic capacity of BAT depends on the species, the ability to enter torpor, photoperiodic and thermal history of animals and ambient temperature. The mechanism of NST in BAT requires a special and unique feature of BAT mitochondria, i.e. The presence of the uncoupling protein UCP1, that uncouples - under the control of fatty acids - oxidative phosphorylation from ATP synthesis. Nevertheless, not only placental mammals but also marsupials and birds are able to increase heat production by means of NST. They need extra heat to maintain a constant body temperature in the cold or during arousal from torpor. However, most of these animals lack functional BAT (it was found only in a few species of marsupials) and their mechanism(-s) of NST is (are) entirely different. NST here is attributable to skeletal muscles and may involve other members of the UCP family, like UCP2 or UCP3 or avian ucps. Another possible mechanisms are based on the translocation of CA2+ between the lumen of sarcoplasmic reticulum (SR) and the cytosol, mediated by the SR CA2+-ATPase. The energy derived from a CA2+ gradient may be converted into heat. Independently of BAT- or muscle-origin, NST is an important source of heat in the face of cold. Different mechanisms could evolve concomitantly as a response to changes in the environment, mainly due to a decrease in ambient temperature. Both, seasonal and daily changes in the capacity of NST reflect different demands for heat dependently on the time of the year and time of day.
Keywords
Journal
Year
Volume
56
Issue
1-2
Pages
9-25
Physical description
Dates
published
2007
Contributors
  • Zakład Fizjologii Zwierząt, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
References
  • Aschoff J., 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp. Biochem. Physiol. 69a, 611-619.
  • Augee M. L., Ealey E. M. H., Spencer H., 1970. Biotelemetric studies of temperature regulation and torpor in the echidna, Tachyglossus aculeatus. J. Mammal. 51, 561-570.
  • Bao W.-D., Wang D.-H., Wang Z.-W., 2002. Nonshivering thermogenesis in four rodent species from kubaqi desert, Inner Mongolia. China Folia Zool. 52 (suppl. 1), 9-13.
  • Barger J. L., Barnes B. M., Boyer B. B., 2006. Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak. J. Appl. Physiol. 101, 339-347.
  • Barnes B. M., 1989. Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator. Science 244, 1593-1595.
  • Bicudo J. E. P. W., Vianna C. R., Chauri-berlinck J. G., 2001. Thermogenesis in birds. Bioscience Rep. 21, 181-188.
  • Bicudo J. E. P. W., Bianco A. C., Vianna C. R., 2002. Adaptive thermogenesis in hummingbirds. J. Exp. Biol. 205, 2267-2273.
  • Block B. A., 1994. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 537-577.
  • Block B. A., Carey F. G., 1985. Warm brain and eye temperatures in sharks. J. Comp. Physiol. b 156, 229-236.
  • Borecký J., Maia I. G., Arruda P., 2001. Mitochondrial uncoupling protein in mammals and plants. Bioscience Rep. 21, 201-212.
  • Bowers R. R., Gettys T. W., Prpic V., Harris R. B. S., Bartness T. J., 2005. Short photoperiod increases adipocyte sensitivity to noradrenergic stimulation in Siberian hamsters. Am. J. Physiol. 288, R1354-R1360.
  • Brack V. Jr., Twente J. W., 1985. The duration of the period of hibernation of three species of vespertilionid bats. I. Field Studies. Can. J. Zool. 63, 2952-2954.
  • Brice P. H., Grigg G. C., Beard L. A., Donovan J. A., 2002. Patterns of activity and inactivity in echidnas (Tachyglossus aculeatus) free-ranging in a hot dry climate: correlates with ambient temperature, time of day and season. Aust. J. Zool. 50, 461-475.
  • Bukowiecki L., Collet A. J., Follea N., Guay G., Jahjah L., 1982. Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am. J. Physiol. 242, E353-e359.
  • Cannon B., Golozoubova V., Matthias A., Ohlson K. e., Jacobsson A., Nederdaard J., 2000. Is there a life in the cold without UCP1? uncoupling proteins and thermoregulatory thermogenesis. [w:] Life in The Cold. Eleventh International Hibernation Symposium. Heldmaier G., Klingenspor M. (red.). Springer Verlag, 387-400.
  • Cannon B., Nederdaard J., 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359.
  • Chen X.-M., Hosono T., Yoda T., Fukuda Y., Kanosue K., 1998. Efferent projection from the preoptic area from the control of non-shivering thermogenesis in rats. J. Physiol. 512.3, 883-892.
  • Cinti S., 2005. The adipose organ. Prostag., Leukotr. Ess. 73, 9-15.
  • Dawson W. R., Carey C., 1976. Seasonal Acclimatization To Temperature In Cardueline Finches I. Insulative And Metabolic Adjustments. J. Comp. Physiol. B 112, 317-333.
  • Dawson W., Marsh R. L., Yacoe M. E., 1983. Metabolic adjustments of small passerine birds for migration and cold. Am. J. Physiol. 245, R755-R767.
  • De Meis L., Bianconi M. L., Suzano V. A., 1997. Control of energy fluxes by the sarcoplasmatic reticulum Ca2+-atpase: ATP hydrolysis, ATP synthesis and heat production. Febs Lett. 406, 201-204.
  • Denjean F., Lachuer J., Cohen-Adad F., Barré H., Duchamp C., 1999. Are the mammalian-like uncoupling proteins 1 and 2 expressed in cold-acclimated muscovy ducklings? ornis fennica 76, 167-175.
  • Didow L. A., Hayward J. S., 1969. Seasonal variations in the mass and composition of brown adipose tissue in the meadow vole, Microtus pennsylvanicus. Can. J. Zool. 47, 547-555.
  • Duchamp C., Marmonier F., Denjean F., Lachuer J., Eldershaw T. P. D., Rouanet J.-l., Morales A., Meister R., Bénistant C., Roussel D., Barré H., 1999. Regulatory, cellular and molecular aspects of avian nonshivering thermogenesis. Ornis Fennica 76, 151-165.
  • Erlanson-Albertsson C., 2003. The role of uncoupling proteins in the regulation of metabolism. Acta Physiol. Scand. 178, 405-412.
  • Filali-Zegzouti Y., Abdelmelek H., Rouanet J. L., Cottet-Emard J. M., Pequignot J. M., Barré H., 2000. Involvement of the catecholaminergic system in glucagon-induced thermogenesis in muscovy ducklings (Cairina moschata). Eur. J. Physiol. 441, 275-280.
  • Foster D. O., 1985. Participation of alpha-adrenoreceptors in brown adipose tissue thermogenesis in vivo. Int. J. Obes. 9 (suppl. 2), 25-29.
  • Foster D. O., Frydman M. L., 1978. Nonshivering thermogenesis in rat. Ii. Measurement of Blood Flow With Microspheres Point To Brown Adipose Tissue As the Dominant Site of the Calorigenesis Induced By Noradrenaline. Can. J. Physiol. Pharmacol. 56, 110-122.
  • Geiser F., 1994. Hibernation and daily torpor in marsupials: a review. Aust. J. Zool. 42, 1-16.
  • Geiser F., Baudinette R. V., 1990. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 159, 349-359.
  • Geiser F., Goodship N., Pavey C. R., 2002. Was basking important in the evolution of mammalian endothermy? naturwissenschaften 89, 412-414.
  • Geiser F., Drury R. L., Mcallan B. M., Wang D.-H., 2003. Effects of temperature accliamation on maximum heat production, thermal tolerance, and torpor in a marsupial. J. Comp. Physiol. B. 173, 437-442.
  • Geiser F., Drury R. L., Körtner G., Turbill C., Pavey C. R., Brigham M., 2004. Passive rewarming from torpor in mammals and birds: energetic, ecological and evolutionary implications. [w:] Life in the Cold: Evolution, Mechanisms, Adaptation, And Application. Twelfth International Hibernation Symposium. Barnes B. M., Carey H. V. (red.). Biological Papers of the University of Alaska, Fairbanks, 27, 51-62.
  • Gębczyński A. K., Taylor J. R. E., 2004. Daily variations in body temperature and maximum nonshivering thermogenesis in two species of small rodents. J. Therm. Biol. 29, 123-131.
  • Giacobino J. P., 2001. Uncoupling protein 3 biological activity. Biochem. Soc. T. 29, 774-777.
  • Haim A., Yahav S., 1982. Non-shivering thermogenesis in winter-acclimatized and in long-scotophase and cold-acclimated Apodemus mystacinus (Rodentia). J. Therm. Biol. 7, 193-195.
  • Haim A., Zisapel N., 1999. Daily rhythms of nonshivering thermogenesis in common spiny mice Acomys cahirinus under short and long photoperiods. J. Therm. Biol. 24, 455-459.
  • Haim A., Mcdevitt R. M., Speakman J. R., 1995. Daily variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J. Exp. Biol. 198, 561-565.
  • Hashimoto M., Gao B., Kikuchi-utsumi K., Ohinata H., Osborne P. G., 2002. Arousal from hibernation and BAT thermogenesis against cold: central mechanism and molecular basis. J. Therm. Biol. 27, 503-515.
  • Hayward J. S., Lyman C. P., 1967. Nonshivering heat production during arousal from hibernation and evidence for the contribution of brown fat. [w:] Mammalian Hibernation III. Fisher K. C., Dawe A. R., Lyman C. P., Schönbaum E., South F. E. (red.). Olivier And Boyd, Edinburgh And London, 346-355.
  • Heldmaier G., Lynch G. R., 1986. Pineal involvement in thermoregulation and acclimatization. Pineal Res. Rev. 4, 97-139.
  • Heldmaier G., Steinlechner S., Rafael J., Vsiansky P., 1981. Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 212, 917-919.
  • Heldmaier G., Böckler H., Buchberger A., Lynch G. R., Puchalski W., Steinlechner S., Wiesinger H., 1985. Seasonal acclimation and thermogenesis. [w:] Circulation, Respiration, And Metabolism. Gilles R. (red.). Springer-Verlag, Berlin, 490-501.
  • Heldmaier G., Klaus S., Wiesinger H., Friedrichs U., Wenzel M., 1989. Cold acclimation and thermogenesis. [w:] Living in the Cold ii. Malan A., Canguilhem B. (red.). J. Libbey Eurotext Ltd., 347-358.
  • Himms-Hagen J., 1984. Thermogenesis in brown adipose tissue as an energy buffer. Implications For Obesity. New Engl. J. Med. 311, 1549-1558.
  • Himms-Hagen J., Harper M.-E., 2001. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp. Biol. Med. 226, 78-84.
  • Hope P. J., Pyle D., Daniels C. B., Chapman I., Horowitz M., Morley J. E., Trayhurn P., Kumaratilake J., Wittert G., 1997. Identification of brown fat and mechanisms for energy balance in the marsupials, Sminthopsis crassicaudata. Am. J. Physiol. 273, R161-r167.
  • Janský L., 1973. Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48, 85-132.
  • Jarmuszkiewicz W., Sluse-Goffart C. M., Vercesi A. E., Sluse F. E., 2001. Alternative oxidase and uncoupling protein: thermogenesis versus cell energy balance. Bioscience Rep. 21, 213-222.
  • Jastroch M., Stöhr S., Withers K., Klingenspor M., 2004a. A quest for the origin of mammalian uncouplin proteins. [w:] Life in the Cold: Evolution, Mechanisms, Adaptation, And Application. Twelfth International Hibernation Symposium. Barnes B. M., Carey H. V. (red.). Biological Papers of the University of Alaska, Fairbanks, 27, 417-426.
  • Jastroch M., Withers K., Klingenspor M., 2004b. Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol. Genomics 17, 130-139.
  • Jefimow M., Masuda A., Oishi T., 2000. Daily rhythm of the response to noradrenaline in Djungarian hamsters acclimated to cold and short photoperiod. Biol. Rhythm Res. 31, 545-558.
  • Jefimow M., Wojciechowski M., Tęgowska E., 2003. Daily variations in the influence of noradrenaline on preferred ambient temperature of the Siberian hamsters. Comp. Biochem. Physiol. a 134, 717-726.
  • Jefimow M., Wojciechowski M., Tęgowska E., 2004. Seasonal and daily changes in the capacity for nonshivering thermogenesis in the golden hamsters housed under semi-natural conditions. Comp. Biochem. Physiol. a 137, 297-309.
  • Kabat A. P., Rose R. W., Harris J., West A. K., 2003a. Molecular identification of uncoupling proteins (UCP2 and UCP3) and absence of UCP1 in the marsupial Tasmanian bettong, Bettongia gaimardi. Comp. Biochem. Physiol. b 134, 71-77.
  • Kabat A. P., Rose R. W., West A. K., 2003b. Non-shivering thermogenesis in a carnivorous marsupial, Sarcophilus harrisii, in the absence of UCP1. J. Therm. Biol. 28, 413-420.
  • Kabat A. P., Rose R. W., West A. K., 2004. Molecular identification of uncoupling proteins 2 and 3 in a carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii). Physiol. Biochem. Zool. 77, 109-115.
  • Klingenspor M., Ebbinghaus C., Hülshorst G., Stöhr S., Spiegelhalter F., Haas K., Heldmaier G., 1996. Multiple regulatory steps are involved in the control of lipoprotein lipase activity in brown adipose tissue. J. Lipid Res. 37, 1685-1695.
  • Kronfeld N., Zisapel N., Haim A., 1994. Diurnal variations in the response of golden spiny mice (Acomys russatus) to noradrenaline injection. [w:] Thermal Balance in Health And Disease. Advances in Pharmacological Sciences. Zeisberger E., Schonbaum E., Lomax P. (red.). Birkhäuser Verlag, 185-189.
  • Lafontan M., Berlan M., 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057-1091.
  • Li X.-S., Wang D.-H., 2005. Regulation of body weight and thermogenesis in seasonally acclimatized brandt's voles (Microtus brandti). Horm. Behav. 48, 321-328.
  • Liebig M., Von Praun C., Heldmaier G., Klingenspor M., 2004. Absence of UCP3 in brown adipose tissue does not impair nonshivering thermogenesis. Physiol. Biochem. Zool. 77, 116-126.
  • Loudon A., Rothwell N., Stock M., 1985. Brown fat, thermogenesis and physiological birth in a marsupial. Comp. Biochem. Physiol. 81a, 815-819.
  • Lyman C. P., 1982. Mechanisms of arousal. [w:] Hibernation And Torpor in Mammals And Birds. Lyman C. P., Willis J. S., Malan A., Wang L. C. H. (red.). Academic Press Inc., New York, 104-123.
  • Malan A., 1989. Ph as a control factor of cell function in hibernation: the case of brown adipose tissue thermogenesis. [w:] Living in The Cold II. Malan A., Canguilhem B. (red.). J. Libbey Eurotext Ltd., 333-341.
  • Marjoniemi K., Hohtola E., 2000. Does cold acclimation induce nonshivering thermogenesis in juvenile birds? Experiments with Pekin ducklings and Japanese quail chicks. J. Comp. Physiol. b 170, 537-543.
  • Marsh R. L., Dawson W., 1982. Substrate metabolism in seasonally acclimatized american goldfinches. Am. J. Physiol. 242, R563-R569.
  • Marsh R. L., Dawson W., 1989. Avian adjustments to cold. [w:] Advances in Comparative And Environmental Physiology 4. Wang L. C. H. (red.). Springer Verlag, Berlin Heildelberg, 205-253.
  • May E.L., 2003. Effects of cold acclimation on shivering intensity in the kowari (Dasyuroides byrnei), a dasyurid marsupial. J. Therm. Biol. 28, 477-487.
  • Mcnab B. K., 2002. The physiological ecology of vertebrates. A View From Energetics. Cornell University Press.
  • Merritt J. F., Zegers D. A., Rose L. R., 2001. Seasonal thermogenesis of northern flying squirrels (Glaucomys volans). J. Mammal. 82, 51-64.
  • Mills E. M., Banks M. L., Sprague J. E., Finkel T., 2003. Pharmacology: uncoupling the agony from ecstasy. Nature 426, 403-404.
  • Mohell N., 1984. Alpha1-adrenergic receptors in brown adipose tissue. Thermogenic Significance And Mode of Action. Rozprawa Doktorska, University of Stockholm.
  • Mohell N., Connolly E., Nedergaard J., 1987. Distinct between mechanisms underlying α1- and β-adrenergic respiratory stimulation in brown fat cells. Am. J. Physiol. 253, C301-C308.
  • Moshkin M. P., Novikov E. A., Petrovski D. V., 2001. Seasonal changes of thermoregulation in the mole vole Ellobius talpinus. Physiol. Biochem. Zool. 74, 869-875.
  • Murayama S., Handa H., 2000. Isolation and characterization of cDNAs encoding mitochondrial uncoupling proteins in wheat: wheat UCP genes are not regulated by low temperature. Mol. Gen. Genet. 264, 112-118.
  • Muzzin P., 2002. The uncoupling proteins. Ann. Endocrinol. 63, 106-110.
  • Nedergaard J., Cannon B., 1987. Apparent masking of [3H]GDP binding in rat brown-fat mitochondria is due to mitochondrial swelling. Eur. J. Biochem. 164, 681-686.
  • Nedergaard J., Herron D., Jacobsson A., Rehnmark S., Cannon B., 1995. Norepinephrine as a morphogen?: Its unique interaction with brown adipose tissue. Int. J. Dev. Biol. 39, 827-837.
  • Nedergaard J., Matthias A., Golozoubova V., Jacobsson A., Cannon B., 1999. UCP1: the original uncoupling protein-and perhaps the only one? j. Bioenerg. Biomemb. 31, 475-491.
  • Nedergaard J., Golozoubova V., Matthias A., Asadi A., Jacobsson A., Cannon B., 2001. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504, 82-106.
  • Nedergaard J., Golozoubova V., Cannon B., 2004. Brown-fat-derived and thyroid-hormone thermogenesis: mechanisms and interaction. [w:] Life in the Cold: Evolution, Mechanisms, Adaptation, And Application. Twelfth International Hibernation Symposium. Barnes B. M., Carey H. V. (red.). Biological Papers of the University of Alaska, Fairbanks, 27, 427-440.
  • Nespolo R. F., Bacigalupe L. D., Sabat P., Bozinovic F., 2002. Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans, the role of thermal acclimation. J. Exp. Biol. 205, 2697-2703.
  • Nicol S. C., Andersen N. A., 2000. Patterns of hibernation of echidnas in tasmania. [w:] Life in the Cold. Eleventh International Hibernation Symposium. Heldmaier G., Klingenspor M. (red.). Springer Verlag, 21-28.
  • Nicol S. C., Pavlides D., Andersen N. A., 1997. Nonshivering thermogenesis in marsupials: absence of thermogenic response to β3-adrenergic agonists. Comp. Biochem. Physiol. 117a, 399-405.
  • Opazo J. C., Nespolo R. F., Bozinovic F., 1999. Arousal from torpor in the chilean mouse-opposum (Thalamys elegans): does non-shivering thermogenesis play a role? comp. Biochem. Physiol. a 123, 393-397.
  • Rafael J., Vsiansky P., Heldmaier G., 1985a. Seasonal adaptation of brown adipose tissue in the Djungarian hamster. J. Comp. Physiol. B. 155, 521-528.
  • Rafael J., Vsiansky P., Heldmaier G., 1985b. Increased contribution of brown adipose tissue to nonshivering thermogenesis in the Djungarian hamster during cold-adaptation. J. Comp. Physiol. B. 155, 712-722.
  • Raimbault S., Dridi S., Denjean F., Lachuer J., Couplan E., Bouillaud F., Bordas A., Duchamp C., Taouis M., Ricquier D., 2001. An uncoupling protein homologue putatively involved in facultative musce thermogenesis in birds. Biochem. J. 353, 441-444.
  • Rauch J. C., Beatty D. D., 1975. Comparison of regional blood distribution in Eptesicus fuscus (big brown bat) during torpor (summer), hibernation (winter), and arousal. Can. J. Zool. 53, 207-214.
  • Redlin U., Nuesslein B., Schmidt I., 1992. Circadian changes of brown adipose tissue thermogenesis in juvenile rats. Am. J. Physiol. 262, R504-R508.
  • Reis M., Farage M., De Meis L., 2002. Thermogenesis and energy expenditure: control of heat production by the Ca2+-ATPase of fast and slow muscles. Mol. Membr. Biol. 19, 301-310.
  • Rose R. W., Ikonomopolou M.P., 2005. Shivering and non-shivering thermogenesis in a marsupial, the eastern barred bandicoot (Perameles gunnii). J. Therm. Biol. 30, 85-92.
  • Rose R. W., West A. K., Ye J.-M., Mccormack G. H., Colquhoun E. Q., 1999. Nonshivering thermogenesis in a marsupial (the Tasmanian bettong Bettongia gaimardi) is not attributable to brown adipose tissue. Physiol. Biochem. Zool. 72, 699-704.
  • Rousset S., Alves-Guerra M.-C., Mozo J., Miroux B., Cassard-Doulcier A.-A., Bouillaud F., Ricquier D., 2004. The biology of mitochondrial uncoupling proteins. Diabetes 53 (suppl. 1), S130-S135.
  • Saarela S., Heldmaier G., 1987. Effect of photoperiod and melatonin on cold resistance, thermoregulation and shivering/nonshivering thermogenesis in Japanese quail. J. Comp. Physiol. B 157, 625-633.
  • Saarela S., Reiter R. J., 1994. Function of melatonin in thermoregulatory processes. Life Sci. 5, 295-311.
  • Saarela S., Hissa R., Pyörnilä A., Harjula R., Ojanen M., Orell M., 1989. Do birds possess brown adipose tissue? comp. Biochem. Physiol. 92a, 219-228.
  • Schaeffer P. J., Villarin J. J., Lindstedt S. L., 2003. Chronic cold exposure increases skeletal muscle oxidative structure and function in Monodelphis domestica, a marsupial lacking brown adipose tissue. Physiol. Biochem. Zool. 76, 877-887.
  • Schrauwen P., Hoeks J., Schaart G., Kornips E., Binas B., Van De Vusse G. J., Van Bilsen M., Luiken J. J. F. P., Coort S. L. M., Glatz J. F. C., Saris W. H. M., Hesselink M. K. C., 2003. Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. Faseb 17, 2272-2274.
  • Skulachev V. P., 2001. Barbara Cannon's data on the UCP1-ablated mice: 'non-cannonical' point of view. Bioscience Rep. 21, 189-194.
  • Smith B. K., Dawson T. J., 1984. Effect of cold and warm acclimation on the thermal balance of a marsupial Dasyuroides byrnei. [w:] Thermal Physiology. Hales J. R. S. (red.). Raven Press, New York, 475-478.
  • Starke K., 1989. Presynaptic autoregulation: does it play role? news in physiol. Sci. 4, 1-4.
  • Stryer L., 2003. Biochemia. Pwn Warszawa.
  • Toyomizu M., Ueda M., Sato S., Seki Y., Sato K., Akiba Y., 2002. Cold-induced mitochondrial uncoupling and expression of chicken UCP and ant mRNA in chicken skeletal muscle. Febs Lett. 529, 313-318.
  • Twente J. W., Twente J., Brack V., Jr., 1985. The duration of the period of hibernation of three species of vespertilionid bats. Ii. Laboratory Studies. Can. J. Zool. 63, 2955-2961.
  • Vianna C. R., Hagen T., Zhang C.-Y., Bachman E., Boss O., Gereben B., Moriscot A. S., Lowell B. B., Bicudo J. E. P. W., Bianco A. C., 2001. Cloning and functional characterization of an uncoupling protein homolog in hummingbirds. Physiol. Genomics 5, 137-145.
  • Wang D., Sun R., Wang Z., Liu J., 1999. Effects of temperature and photoperiod on thermogenesis in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus). J. Comp. Physiol. b 169, 77-83.
  • Watanabe M. E., 2005. Generating heat: new twist in the evolution of endothermy. Bioscience 55, 470-475.
  • Watts R. H., Refinetti R., 1996. Circadian modulation of cold-induced thermogenesis in the golden hamster. Biol. Rhythm Res. 27, 87-94.
  • Wojciechowski M. S., 2002. Strategie adaptacyjne nietoperzy heterotermicznych na przykładzie nocka dużego Myotis myotis (Borkhausen, 1797) i nocka rudego Myotis daubentonii (Kuhl, 1817). Rozprawa Doktorska. Uniwersytet M. Kopernika.
  • Woods C. P., Brigham M., 2004. The avian enigma: 'hibernation' by common poorwills (Phalaenoptilus nuttalli). [w:] Life in the Cold: Evolution, Mechanisms, Adaptation, And Application. Twelfth International Hibernation Symposium. Barnes B. M., Carey H. V. (red.). Biological Papers of the University of Alaska, Fairbanks, 27,231-240.
  • Ye J. M., Edwards S. J., Rose R. W., Steen J. T., Clark M. G., Colquhoun E. Q., 1996. Alpha-adrenergic stimulation of thermogenesis in a rat kangaroo (Marsupialia, Bettongia gaimardi). Am. J. Physiol. 271, R586-R592.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv56p9kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.