Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 1-2 | 99-106
Article title

Oddziaływanie dendrymerów poliamidoaminowych (PAMAM) z jonami metali i jego zastosowanie

Title variants
Interaction of poliamidoamines (PAMAM) dendrimers with metal ions and its practical application
Languages of publication
Dendrimers are hyper branched and three-dimensional polymers. They possess many interesting biological, photophysical and chemical properties. It is shown that dendrimers can be used as fluorescence sensors in analytical tests to detect different metal ions (also lanthanide) and can be considered as modern and very sensitive bioindicators. These polymers could be also applied as chelators of metal ions of potential application in environmental protection. Metallodendrimers (metal-containing dendrimers) could be used in modern biomedical sciences, for example in radiotherapy or clinical imaging. The interaction of PAMAM dendrimers with metal ions may underlie the development of modern analytical or diagnostic techniques and high efficiency environmental protection technologies.
Physical description
  • Katedra Biofizyki Ogólnej, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Katedra Biofizyki Ogólnej, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Atkinson P., Bretonniere Y., Parker D., 2004. Chemoselective signalling of selected phospho-anions using lanthanide luminescence. Chem. Commun. 4, 438-439.
  • Balzani V., Ceroni P., Maestri M., Saudan Ch., 2003. Luminescent dendrimers. Recent Advances. Top. Curr. Chem. 228, 159-191.
  • Barth R. F., Adams D. M., Soloway A. H., Alam F., Darby M. V., 1994. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy. Bioconjug. Chem. 5, 58-66.
  • Bielinska A. U., Kukowska-Latallo J. F., Johnson J., Tomalia D. A., Baker J. R., 1996. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24, 2176-2182.
  • Bryant L. H., Brechbiel M. W., Wu C., Bulte J. W. M., Herynek V., Frank J. A., 1999. Synthesis and relaxometry of high-generation (G=5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J. Magn. Reson. Imaging 9, 348-352.
  • Buhleier E., Wehner W., Vögtle F., 1978. 'Cascade' and 'Nonskid-Chain-like' syntheses of molecular cavity topologies. Synthesis 2, 155-158.
  • Caminati, G., Turro, N. J., Tomalia, D. A., 1990. Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants. J. Am. Chem. Soc. 112, 8515-8522.
  • Ceroni P., Vicinelli V., Maestri M., Balzani V., Lee S., van Heyst J., Gorka M., Vögtle F., 2004. Luminescent dendrimers as ligands for metal ions. J. Organomet. Chem. 689, 4375-4383.
  • Chen Q.-Q., Lin L., Chen H.-M., Yang S.-P. , Yang L.-Z., Yu X.-B., 2006. A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for the rare earth cations. J. Photochem. Photobiol., A 180, 69-74.
  • Cooper A. I., Londono J. D., Wignall G., McClain J. B., Samulski E. T., Lin J. S., Dobrynin A., Rubinstein M., Burke A. L. C., Frechet J. M. J., DeSimone J. M., 1997. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature 389, 368-371.
  • Crooks R., Zhao M., Sun L., Chechik V., Yeung L., 2001. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc. Chem. Res., 34, 181-190.
  • Diallo M. S., Balogh L., Shafgati A., Johnson J., Goddard W., Tomalia D., 1999. Poly(amidoamine) dendrimers: A new class of high capacity chelating agents for Cu(II) ions. Environ. Sci. Technol. 33, 820-824.
  • Diallo M. S., Christie S., Swaminathan P., Balogh L., Shi X., Um W., Papelis C., Goddard W. A. III., Johnson J. H. Jr., 2004. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20, 2640-2651.
  • Diallo M. S., Christie S., Swaminathan P., Johnson J. M. Jr., Goddard W. A. III., 2005 Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39, 1366-1377.
  • De Silva A. P., Gunaratne H. Q. N., Gunnlauggson T., Huxley A. J. M., McCoy C. P., Rademancher J. T., Rice T. E., 1997. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515-1566.
  • De Silva A. P., McCaughan B., McKiney B. O. F., Querol M., 2003. Newer optical-based molecular devices from older coordination chemistry. Dalton Trans. 1902-1913.
  • Grabchev I., Qian X., Xiao Y., Zhang R., 2002. Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: Polymers regularly labelled with naphthalimide. New J. Chem.26, 920-925.
  • Grabchev I., Chovelon J.-M., Qian X., 2003. A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for metal cations. New J. Chem. 27, 337-340.
  • Grabchev I., Soumillion J.-P., Muls B., Ivanova G., 2004. Poly(amidoamine) dendrimer peripherally modified with 4-N,N-dimethylaminoethyleneamino-1,8-naphthalimide as a sensor of metal cations and protons. J. Photochem. Photobiol. Sci. 3, 1032-1037.
  • Grabchev I., Chovelon J.-M., Nedelcheva A., 2006. Green fluorescence poly(amidoamine) dendrimer functionalized with1,8-naphthalimide units as potential sensor for metal cations. J. Photochem. Photobiol. A 183, 9-14.
  • Grabchev I., Guittonneau S., 2006. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. J. Photochem. Photobiol. A: Chem. 179, 28-34.
  • Gunnlaugsson T., Leonard J. P., 2003. H+, Na+ and K+ modulated lanthanide luminescent switching of Tb(III) based cyclen aromatic diaza-crown ether conjugates in water. Chem. Commun. 7, 2424-2425.
  • Gunnlaugsson T., Leonard J. P., Sénéchal K., Harte A. J., 2003. pH responsive Eu(III)-phenanthroline supramolecular conjugate: Novel off-on-off luminescent signaling in the physiological pH range. J. Am. Chem. Soc. 125, 12062-12063.
  • Hawker C. J., Frechet J. M. J., 1990. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638-7647.
  • Hawthorne M. F., 1993. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem., Int. Edn. 32, 950-984.
  • Hodge P., 1993. Polymer science branches out. Nature 362, 18-19.
  • Klajnert B., Cortijo-Arellano M., Bryszewska M., Cladera J., 2006. Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer's and prion diseases. Biochem. Biophys. Res. Commun. 339, 577-582.
  • Knapen J. W .J., van der Made A. W., de Wilde J. C., van Leeuwen P. W. N. M., Wijkens P., Grove D. M., van Koten G., 1994. Homogenous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 372, 659-663.
  • Kukowska-Latallo J. F., Raczka E., Quintana A., Chen C. L., Rymaszewski M., Baker J. R., 2000. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum. Gene Therapy 11, 1385-1395.
  • Liu L., Barth R. F., Adams D. M., Soloway A. H., Reisefeld R. A., 1995. Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J. Hematotherapy 4, 477-483.
  • Lo I. M. C., Yang X. Y., 1999. EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, Soil Pollut., 109, 219-236.
  • Maciejewski M., 1982. Concepts of trapping topologically by shell molecules. J. Macromol. Sci.-Chem. A17, 689-703.
  • Miller L., Duan R., Tully D., Tomalia D., 1997. Electrically conducting dendrimers. J. Am. Chem. Soc. 119, 1005-1010.
  • Miller L., Hashimoto T., Tabakoivic I., Swanson D., Tomalia D., 1995. Delocalized π-stacks formed on dendrimers. Chem. Mater. 7, 9-11.
  • Newkome G. R., Yao Z. Q., Baker G. R., Gupta V. K., 1985. Cascade molecules: A new approach to micelles, A[27]-arborol. J. Org. Chem. 50, 2003-2006.
  • Parker D., Dickins R. S., Puschmann H., Crossland C., Howard J. A. K., 2002. Being excited by lanthanide coordination complexes: Aqua species, chirality, excited- state chemistry, and exchange dynamics. Chem. Rev. 102, 1977-2010.
  • Roberts J. C., Adams Y. E., Tomalia D. A., Mercer-Smith J. A., Lavallee D. K., 1990. Using starburst dendrimers as linker molecules to radiolabel antibodies. Bioconjugate Chem. 1, 305-308.
  • Roy R., Zanini D., Meunier S. J., Romanowska A., 1993. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J. Chem. Soc. Chem. Commun. 1869-1872.
  • Rurack K., 2001. Flipping the light switch 'ON' - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochem. Acta Part A 57, 2161-2195.
  • Sali S., Grabchev I., Chovelon J.-M., Ivanova G., 2006. Selective sensors for Zn2+ cations based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with1,8-naphthalimides. Spectrochim. Acta, A 65, 591-597.
  • Shcharbin D., Bryszewska M., 2006. Complex formation between endogenous toxin bilirubin and polyamidoamine dendrimers: A spectroscopic study. Biochim. Biophys. Acta 1760, 1021-1026.
  • Shcharbin D., Mazur J., Szwedzka M., Wasiak M., Palecz B., Przybyszewska M., Zaborski M., Bryszewska M., 2007. Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids Surf., B. w druku.
  • Stoddart F. J., Welton T., 1999. Metal-containing dendritic polymers. Polyhedron 18, 3575-3591.
  • Tabakoivic I., Miller L., Duan R., Tully D., Tomalia D., 1997. Dendrimers peripherally modified with anion radicals that form π-dimers and π-stacks. Chem. Mater. 9, 736-745.
  • Tomalia, D. A., Baker H., Dewald J. R., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P., 1985. A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 17, 117-132.
  • Tomalia D. A., Dvornic P. R., 1994. What promise for dendrimers? Nature 372, 617-618.
  • Werts M. H. V., Woudendberg R. H., Emmerink P. G., van Gassel R., Hofstraat J. W., Verhoeven J. W., 2000. A near-infrared luminescent label based on YbIII ions and its application in a fluoroimmunoassay. Angew. Chem. Int. Ed. 39, 4542-4544.
  • Wiener E. C., Brechbiel M. W., Brothers H., Magin R. L., Gansow O. A., Tomalia D. A., Lauterbur P. C., 1994. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Mag. Res. Med. 31, 1-8.
  • Wiener E. C., Auteri F. P., Chen J. W., Brechbiel M. W., Gansow O. A., Schneider D. S., Belford R. L., Clarkson R. B., Lauterbur P. C., 1996. Molecular dynamics of ion-chelate complexes attached to dendrimers. J. Am. Chem. Soc. 118, 7774-7782.
  • Wu C., Brechbiel M. W., Kozak R. W., Gansow O. A., 1994. Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg. Med. Chem. Lett. 4, 449-454.
  • Xu Y., Zhao D., 2005. Removal of copper from contaminated soil by use of poly(amidoamine) dendrimers. Environ. Sci. Technol., 39, 2369-2375.
  • Zanini D., Roy R., 1998. Practical synthesis of Starburst PAMAM alpha-thiosialodendrimers for probing multivalent carbohydrate-lectin binding properties. J. Org. Chem. 63, 3486-3491.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.