Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 56 | 3-4 | 409-419

Article title

Białka opiekuńcze - "molekularne przyzwoitki" w fałdowaniu białek

Content

Title variants

EN
Molecular chaperons: chaperones and chaperonins

Languages of publication

PL EN

Abstracts

EN
Proteins must be folded into their correct three-dimensional conformation in order to attain biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating "conformational" diseases. Proteins are synthesized and folded continuously. The last of these processes is greatly assisted by molecular chaperones. They are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. Proteins that can be classified as molecular chaperones can be divided into two groups: (a) ribosome-associated chaperons responsible for co-traslational folding of polypetides and (b) cytoplasmic molecular chaperones including Hsp90, Hsp70/Hsp40 and chaperonin CCT in eukaryotic cells. Prokaryotic cells posses DnaK/DnaJ system and GroEL/GroES, respectively. This review focuses on the emerging role of molecular chaperones in protein quality control in eukaryotic and prokaryotic cells.

Keywords

Journal

Year

Volume

56

Issue

3-4

Pages

409-419

Physical description

Dates

published
2007

Contributors

  • Zakład Biologii Komórki, Instytut Biologii Doświadczalnej PAN, Pasteura 3, 02-093 Warszawa, Polska
author
  • Zakład Biologii Komórki, Instytut Biologii Doświadczalnej PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Zakład Biologii Komórki, Instytut Biologii Doświadczalnej PAN, Pasteura 3, 02-093 Warszawa, Polska

References

  • Barral J. M., Broadley S. A., Schaffar G., Hartl F. U., 2004. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17-29.
  • Bregier C., Kupikowska B., Fabczak H., Fabczak S., 2008 . Chaperoniny CCT i białka współdziałające. Postepy Biochem. (w druku).
  • Buchberger A., 2002. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 12, 216-221.
  • Buckle A. M., Zahn R., Fersht A. R., 1997. A structural model for GroEL-polypeptide recognition. Proc. Natl. Acad. Sci. USA 94, 3571-3575.
  • Bukau B., Weissman J., Horwich A., 2006, Molecular chaperones and protein quality control. Cell 125, 443-451.
  • Cowan N. J., Lewis S. A., 2001. Type II chaperonins, prefoldin, and the tubulin-specific chaperones. Adv. Protein Chem. 59, 73-104.
  • Ellis R. J., Hartl F. U., 1996. Protein folding in the cell: competing models of chaperonin function. FASEB J. 10, 20-26.
  • Ellis R. J., 1997. Do molecular chaperones have to be proteins? Biochem. Biophys. Res. Commun. 238, 687-692.
  • Farr G. W., Furtak K., Rowland M. B., Ranson N. A., Saibil H. R., Kirchhausen T., Horwich A. L., 2000. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100, 561-573.
  • Fenton W. A., Kashi Y., Furtak K., Horwich A. L., 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614-619.
  • Ferbitz L., Maier T., Patzelt H,. Bukau B., Deuerling E., Ban N., 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 520-522.
  • Franke J., Reimann B., Hartmann E., Köhlerl M., Wiedmann B., 2001. Evidence for a nuclear passage of nascent polypeptide-associated complex subunits in yeast. J. Cell Sci. 114, 2641-2648.
  • Gautschi M., Mun A., Ross S., Rospert S., 2002. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209-4214.
  • Genevaux P., Keppel F., Schwager F., Langendijk-Genevaux P. S., Hartl F. U., Georgopoulos C., 2004. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep. 5, 195-200.
  • Grallath S., Schwarz J. P., Bottcher U. M., Bracher A., Hartl F. U., Siegers K., 2006. L25 functions as a conserved ribosomal docking site shared by nascent chain-associated complex and signal-recognition particle. EMBO Rep. 7, 78-84.
  • Grantcharova V., Alm E. J., Baker D., Horwich A. L., 2001. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70-82.
  • Gutsche I., Essen L. O., Baumeister W., 1999. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293, 295-312.
  • Gutsche I., Holzinger J., Rossle M., Heumann H., Baumeister W., May R. P., 2000. Conformational rearrangements of an archaeal chaperonin upon ATPase cycling. Curr. Biol. 10, 405-408.
  • Hartl F. U., Hayer-Hartl M., 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.
  • Horwich A. L., Fenton W. A., Chapman E., Farr G. W., 2007. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23, 115-145.
  • Houry W. A., 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein Pept. Sci. CharStyle:volume>2, 227-244.
  • Hundley H. A., Walter W., Bairstow S., Craig E. A., 2005. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032-1034.
  • Kedzierska S., Staniszewska M., Wegrzyn A., Taylor A., 1999. The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregated by heat-shock from Escherichia coli cells. FEBS Lett. CharStyle:volume>446, 331-337
  • Kramer G., Rutkowska A., Wegrzyn R. D., Patzelt H., Kurz T. A., Merz F., Rauch T., Vorderwülbecke S., Deuerling E., Bukau B., 2004a. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777-3784.
  • Kramer G., Patzelt H., Rauch T., Kurz T. A., Vorderwulbecke S., Bukau B., Deuerling E., 2004b. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J. Biol. Chem. 279, 14165-14170.
  • Lee S., Tsai F. T., 2005. Molecular chaperones in protein quality control. J. Biochem. Mol. Biol. 38, 259-265.
  • Levy-Rimler G., Bell R. E., Ben-Tal N., Azem A., 2002. Type I chaperonins: not all are created equal. FEBS Lett. 529, 1-5.
  • Lindquist S., Craig E. A., 1988. The heat-shock proteins. Annu. Rev. Genet. 22, 631-677.
  • Mayer M. P., Bukau B., 1999. Molecular chaperones: the busy life of Hsp90. Curr. Biol. 9, R322-325.
  • Meyer A. S., Gillespie J. R., Walther D., Millet I. S., Doniach S., Frydman J., 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113, 369-381.
  • Otto H., Conz C., Maier P., Wölfle T., Suzuki C. K., Jenö P., Rücknagel P., Stahl J., Qiu X. B., Shao Y. M., Miao S., Wang L., 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560-2570.
  • Rospert S., Dubaquié Y., Gautschi M., 2002. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 59, 1632-1639.
  • Schoehn G., Quaite-Randall E., Jimenez J. L., Joachimiak A., Saibil H. R., 2000a. Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. J. Mol. Biol. 296, 813-819.
  • Schoehn G., Hayes M., Cliff M., Clarke A. R., Saibil H. R., 2000b. Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. J. Mol. Biol. 301, 323-332.
  • Siegers K., Bolter B., Schwarz J. P., Bottcher U. M., Guha S., Hartl F. U., 2003. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J. 22, 5230-5240
  • Spiess C., Meyer A. S., Reissmann S., Frydman J., 2004. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598-604.
  • Spreter T., Pech M., Beatrix B., 2005. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Biol. Chem. 280, 15849-15845.
  • Turner G. C., Varshavsky A., 2000. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117-2120.
  • Valpuesta J. M., Martin-Benito J., Gomez-Puertas P., Carrascosa J. L., Willison K. R., 2002. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529, 11-16.
  • Wall D., Zylicz M., Georgopoulos C., 1995. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. CharStyle:volume>270, 2139-2144.
  • Wegrzyn R. D., Deuerling E., 2005. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell. Mol. Life Sci. 62, 2727-2738.
  • Zietkiewicz S., Lewandowska A., Stocki P., Liberek K., 2006. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J. Biol. Chem. CharStyle:volume>281, 7022-7029.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv56p409kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.