Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 1-2 | 39-48
Article title

Genetyczne mechanizmy determinacji płci i różnicowania gonad ssaków

Title variants
Genetic mechanisms underlying sex determination and gonad differentiation in mammals
Languages of publication
Sex determination and gonadal differentiation are crucial for reproductive success of an individual because they are directly responsible for correct development of gonads that orchestrate sex features and produce gametes. If germ cells are placed in a sex reversed gonad, their genetic sex will be opposite to gonadal sex, which will cause disturbance during spermatogenesis or oogenesis. This indicates that gonadal sex has to be compatible with genetic sex. A lack of compatibility is the direct cause of infertility in disorders such as sex reversal or hermaphroditism. It may be assumed that there is a system of protection against switching on genetic pathways involved in differentiation of the opposite sex gonad. In fact, genetic mechanisms underlying sex determination make up a network of positive and negative molecular interactions, both of which lead to structural changes and prevent sex reversal. All sex determination pathways depend on the existence of Sry, expression of which has to take place within a critical time window so that a testis can develop. Moreover a threshold of both Sry expression level and number of Sry-positive cells needs to be overcome. The key event of male sex determination is DNA bending by SRY, which causes direct or indirect upregulation of Sox9. Most likely SOX9 switches on the expression of multiple genes, driving a bipotential gonad towards differentiation into a testis. Surprisingly, proteins such as DAX1 and WNT4, originally recognized as anti-testis factors, have turned out to be necessary for testis development. Another important discovery was establishing that r-spondin 1 is an essential factor in the female pathway, the loss of which results in a complete sex reversal, which indicates that Sry is not an irreplaceable testis determining factor under some conditions.
Physical description
  • Zakład Anatomii Porównawczej, Instytut Zoologii, Uniwersytet Jagielloński, Ingardena 6, 30-060 Kraków, Polska
  • Adams I. R., McLaren A., 2002. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155-1164.
  • Barrionuevo F., Bagheri-Fam S., Klatting J., Kist R., Taketo M. M., Englert C., Scherer G., 2006. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol. Reprod. 74, 195-201.
  • Bernard P., Harley V. R., 2007. Wnt4 action in gonadal development and sex determination. Int. J. Biochem. Cell Biol. 39, 31-43.
  • Beverdam A., Koopman P., 2005. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum. Mol. Genet. 15, 417-431.
  • Bishop C. E., Whitworth D., Qin Y., Agoulnik A. I., Agoulnik I. U., Harrison W., Behringer R., Overbeek P., 2000. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat. Genet. 26, 490-494.
  • Bowles J., Knight D., Smith C., Wilhelm D., Richman J., Mamiya S., Chawengsaksophak K., Wilson M. J., 2006. Retinoid signaling determines germ cell fate in mice. Science 312, 596-600.
  • Brennan J., Capel B., 2004. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat. Rev. Genet. 5, 509-521.
  • Brennan J., Karl J., Capel B., 2002. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev. Biol. 244, 418-428.
  • Brennan J., Tilmann C., Capel B., 2003. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 17, 800-810.
  • Bullejos M., Koopman P., 2001. Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201-205.
  • Bullejos M., Koopman P., 2005. Delayed Sry and Sox9 expression in developing mouse gonads underlie B6-YDOM sex reversal. Dev. Biol. 278, 473-481.
  • Capel B., 2006. R-spondin1 tips the balance in sex determination. Nat. Genet. 38, 1233-1234.
  • Chaboissier M. C., Kobayashi A., Vidal V., Lutzkendorf S., van de Kant H., Wegner M., de Rooij D., Behringer R., Schedl A., 2004. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891-1901.
  • Cupp A. S., Kim G. H., Skinner M. K., 2000. Expression and action of neurotropin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol. Reprod. 63, 1617-1628.
  • Gubbay J., Collignon J., Koopman P., Capel P., Economou A., Munsterberg A., Vivian N., Goodfellow P., Lovell-Badge R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embrionically expressed genes. Nature 346, 245-250.
  • Jeays-Ward K., Dandonneau M., Swain A., 2004. Wnt4 is required for proper male as well as female sexual development. Dev. Biol. 276, 431-440.
  • Koopman P., 2005. Sex determination: a tale of two Sox genes. Trends Genet. 21, 367-370.
  • Koopman P., Gubbay J., Vivian N., Goodfellow P., Lovell-Badge R., 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121.
  • Malaki S., Nef S., Notarnicola C., Thevenet L., Gasca S., Mejean C., Berta P., Poulat F., Boizet-Bonhoure B., 2005. Prostaglandin D2 induces nuclear import of the sex-determining foctor SOX9 via its cAMP-PKA phosphorylation. EMBO J. 24, 1798-1809.
  • McLaren A., 2003. Primordial germ cells in mouse. Dev. Biol. 262, 1-15.
  • Meeks J. J., Weiss J., Jameson J., 2003. Dax1 is required for testis determination. Nat. Genet. 34, 32-33.
  • Menke D. B., Koubova J., Page D., 2003. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol. 262, 303-312.
  • Nef S., Verma-Kurvari S., Merenmies J., Vassalli J. D., Efstratiadis A., Accili D., Parada L. F., 2003. Testis determination requires insulin receptor family function in mice. Nature 426, 291-295.
  • Palmer S., Burgoyne P. S., 1991. In situ analysis of fetal, prepubertal and adult XX-XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112, 265-268.
  • Parma P., Radi O., Vidal V., Chaboissier M. C., Dellembra E., Valentini S., Guerra L., Schedl A., Camerino G., 2006. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet. 38, 1304-1309.
  • Pierucci-Alves F., Clark A. M., Russell L. D., 2001. A developmental study of the Desert hedgehog-null mouse testis. Biol. Reprod. 65, 1392-1402.
  • Polanco J. C., Koopman P., 2007. Sry and the hesitant beginnings of male development. Dev. Biol. 302, 13-24.
  • Ross A. J., Capel B., 2005. Signaling at the crossroads of gonad development. Trends Endocrinol. Metab. 16, 19-25.
  • Salas-Cortes L., Jaubert F., Barbaux S., Nessmann C., Bono M. R., Fellous M., McElreavey K., Rosemblatt M., 1999. The human SRY protein in fetal and adult Sertoli cells and germ cells. Int. J. Dev. Biol. 43, 135-140.
  • Schmahl J., Capel B., 2003. Cell proliferation is necessary for the determination of male fate in the gonad. Dev. Biol. 258, 264-276.
  • Sekido R., Bar I., Narváez V., Penny G., Lovell-Badge R., 2004. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cells precursors. Dev. Biol. 274, 271-279.
  • Tevosian S. G., Albrecht K. H., Crispino J. D., Fujiwara Y., Eicher E. M., Orkin S. H., 2002. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627-4634.
  • Vidal V., Chaboissier M., de Rooij D., Schedl A., 2001. Sox9 induces testis development in XX transgenic mice. Nat. Genet. 28, 216-217.
  • Wagner K. D., Wagner N., Schedl A., 2003. The complex life of WT1. J. Cell Sci. 116, 1653-1658.
  • Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Dagna Bricarelli F., Keutel J., Hustert E., Wolf U., Tommerupt N., 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111-1120.
  • Wilhelm D., Martinson F., Bradford S., Wilson M. J., Combes A. N., Beverdam A., Bowles J., Mizusaki H., Koopman P., 2005. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev. Biol. 287, 111-124.
  • Yao H., DiNapoli L., Capel B., 2003. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 130, 5895-5902.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.