Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 3-4 | 393-407
Article title

Mechanizmy, procesy i oddziaływania w fitoremediacji

Title variants
Mechanisms, processes and interactions during phytoremediation
Languages of publication
The following factors inhibit the use of plants for the recultivation of the environment contaminated with organic compounds: their bioavailability, take-up, transport, and accumulation. Moreover, a very important factor that affects effective phytoremediation process is phytotoxic influence of the uptaken chemical compounds on the plant's physiological and biochemical processes. Before infiltration into a plant, detoxification system is activated, which causes the following impact in rhizosphere: liberation of xenobiotics-degrading enzymes through plant roots into rhizosphere and collaboration of microorganisms and higher plants.
Physical description
  • Uniwersytet im. A. Mickiewicza, Instytut Biologii Molekularnej i Biotechnologii, Zakład Biochemii, Umultowska 89, 61-614 Poznań, Polska
  • Uniwersytet im. A. Mickiewicza, Instytut Biologii Molekularnej i Biotechnologii, Zakład Biochemii, Umultowska 89, 61-614 Poznań, Polska
  • Alkio M., Tabuchi T. M., Wang X., Colon-carmona A., 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Botan. 56, 421, 2983-2994.
  • Asai K., Takagi K., Shimokawa M., Sue T., Hibi A., Hiruta T., Fujihiro S., Nagasaka H., Hisamatsu S., Sonoki S., 2002. Phytoaccumulation of coplanar PCBs by Arabidopsis thaliana. Environ. Pollut. 120, 509-511.
  • Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J. V., Vangronsveld J., Van Der Lelie D., 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnol. 22, 583-588.
  • Barbour J. P., Smith J. A., Choiu C. T., 2005. Sorption of aromatic organicpollutants to grasses from water. Environ. Sci. Technol. 39, 8369-8373.
  • Boucard T. K., Bardgett R. D., Jones K. C., Semple K. T., 2005. Influence of plants on the chemical extractability and biodegradability of 2, 4-dichlorophenol in soil. Environ. Pollut. 133, 53-62.
  • Burken J. G., Ma X., Struckhoff G. C., Gilbertson A. W., 2005. Volatile organic compound fate in phytoremediation applications: natural and engineered systems. Z. Naturforsch. 60C, 208-215.
  • Chekol T., Vough L. R., Chaney R. L., 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Internat. 30, 799-804.
  • Coleman J. O. D., Blake-kalff M. M. A., Davies T. G. E., 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 2, 4, 144-151.
  • Collins C., fryer m., grosso A., 2006. Plant uptake of non-Ionic organic chemicals. Environ. Sci. Technol. 40, 45-52.
  • Corgie S. C., Joner E. J., Leyval C., 2003. Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257, 143-150.
  • Duran N., Esposito E., 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. Catalysis B; Environ. 28, 83-99.
  • Ekman D. R., Lorenz W. W., Przybyla A. E., Wolfe N. L., Dean J. F. D., 2003. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4, 6-trinitrotoluene Plant Physiol. 133, 1397-1406.
  • Escalante-Espinosa E., Gallegos-martinez M. E., Favel A., torres E., Gutierrez-rojas M., 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59, 405-413.
  • Fava F., Berselli S., Conte P., Piccolo A., Marchetti L., 2004. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol. Bioeng. 88, 214-223.
  • Fismes J., Perrin-ganier C., Empereur-bissonnet P., Morel J. L., 2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 31, 1649-1656.
  • Gadd G. M., 2001. Fungi in bioremediation. Cambridge University Press, Cambridge.
  • Gao Y., Zhu L., 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55, 1169-1178.
  • Glick B. R., 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383-393.
  • Glick B. R., 2004. Teamwork in phytoremediation. Nature Biotechnology 22, 526-527.
  • Huang X.-d., El-alawi Y., Gurska J., Glick B. R., Greenberg B. M., 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81, 139-147.
  • Huang X.-D., El-alawi Y., Penrose D. M., Glick B. R., Greenberg B. M., 2004. Responses of three grass species to creosote during phytoremediation. Environ. Pollut. 130, 453-463.
  • Hynes R. K., Farrell R. E., Germida J. J., 2004. Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int. J. Phytoremed. 6, 253-268.
  • Jansen M. A. K., Hill L. M., Thorneley R. N. F., 2004. A novel stress-acclimation response in Spirodela punctata (Lemnaceae): 2,4, 6-trichlorophenol triggers an increase in the level of an extracellular peroxidase, capable of the oxidative dechlorination of this xenobiotic pollutant. Plant Cell Environ. 27, 603-613.
  • Kaimi E., Mukaidani T., Miyoshi S., Tamaki M., 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Bot. 55, 110-119.
  • Kelsey J. W., White J. C., 2005. Multi-species interactions impact the accumulation of weathered 2, 2-bis ( p-chlorophenyl)-1, 1-dichloroethylene (p,p'-DDE) from soil. Environ. Pollut. 137, 222-230.
  • Kim J., Sung K., Corapcioglu M. Y., Drew M. C., 2004. Solute transport and extraction by a single root in unsaturated soils: model development and experiment. Environ. Pollut. 131, 61-70.
  • Kirk J. L., Klironomos J. N., Lee H., Trevors J. T., 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ. Pollut. 133, 455-465.
  • Komives T., Gullner G., 2005. Phase I xenobiotic Metabolic Systems in Plants. Z. Naturforsch. 60C, 179-185.
  • Kopcewicz J., 2002. Fizjologia roślin. PWN, Warszawa
  • Kreuz K., Tommasini R., Martinoia E., 1996. Old enzymes for a new job (Herbicide detoxification in plants). Plant Physiol. 111, 349-353.
  • Li H., Sheng G., Chiou C. T., Xu O., 2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environ. Sci. Technol. 39, 4864-4870.
  • Lunney A. I., Zeeb B. A., Reimer K. J., 2004. Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ. Sci. Technol. 38, 614 7-6154.
  • Lynch J. M., Moffat A. J., 2005. Bioremediation - prospects for the future application of innovative applied biological research. Ann. Appl. Biol. 146, 217-221.
  • Ma X., Burken J., 2004. Modeling of TCE diffusion to the atmosphere and distribution in plant stems. Environ. Sci. Technol. 38, 458 0-4586.
  • Ma X., Richter A. R., Albers S., Burken J. G., 2004. Phytoremediation of MTBE with hybrid poplar trees. Int. J. Phytoremed. 6, 157-167.
  • Maila M. P., Randima P., Cloete T. E., 2005. Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHS) from the soil. Int. J. Phytoremed. 7, 87-98.
  • McCutcheon S. C., Schnoor J. L., 2003. Phytoremediation: Transformation and Control of Contaminants, Wiley-Interscience, New York.
  • Meade T., D'Angelo E. M., 2005. [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61, 48-55.
  • Mentewab A., Cardoza V., Stewart Jr. C. N., 2005. Genomic analysis of the response of Arabidopsis thaliana to trinitrotoluene as revealed by cDNA microarrays. Plant Sci. 168, 1409-1424.
  • Mezzari M. P., Walters K., Jelinkova M., Shih M.-c., Just C. L., Schnoor J. L., 2005. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol. 138, 858-869.
  • Mitsou K., Koulianou A., Lambropoulou D., Pappas P., Albanis T., Lekka M., 2006. Growth rate effects, responses of antioxidant enzymesand metabolic fate of the herbicide Propanilin the aquatic plant Lemna minor. Chemosphere 62, 275-284.
  • Newman L. A., Reynold C. R., 2005. Bacteria and phytoremediation: new use for endophytic bacteria in plants. Trends Biotechnol. 23, 6-8.
  • Parrish Z. D., Banks M. K., Schwab A. P., 2005. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Pollut. 137, 187-197.
  • Pilon-Smits E., 2005. Phytoremediation. Ann. Rev. Plant Biol. 56, 15-39.
  • Radwan S. S., Dashti N., El-nemr I. m., 2005 Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int. J. Phytoremed. 7, 19-32.
  • Rasmussen G., Olsen R. A., 2004. Sorption and biological removal of creosote-contaminants from groundwater in soilysand vegetated with orchard grass (Dactylis glomerata). Adv. Environ. Res. 8, 313-327.
  • Rentz J. A., Alvarezl P. J. J., Schnoor J. L., 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 136, 477-484.
  • Różański L., 1998. Przemiany pestycydów w organizmach żywych i środowisku. Agra Envirolab, Poznań.
  • Rugh C. L., Susilawati E., Kravchenko A. N., Thomas J. C., 2005. Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation. Z. Naturforsch. 60C, 331-339.
  • Sandermann Jr. H., 1994. Higher plant metabolism of xenobiotics: the ,green liver' concept. Pharmacogenetics 4, 225-241.
  • Shrout J. D., Struckhoff G. C., Parkin G. F., Schnoor J. L., 2006. Stimulation and molecular characterization of bacterial perchlorate degradation by plant-produced electron donors. Environ. Sci. Technol. 40, 310-317.
  • Sonoki T., Kajita S., Ikeda S., Uesugi M., Tatsumi K., Katayama Y., Iimura Y., 2005. Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. App. Microbiol. Biotechnol. 67, 138-142.
  • Stottmeister U., Wießner A., Kuschk P., Kappelmeyer U., Kastner M., Bederski O., Muller R. A., Moormann H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 22, 93-117.
  • Su Y.-H., Zhu Y.-G., 2006. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ. Pollut. 139, 32-39.
  • Szweykowscy A., J., 2003. Botanika. Morfologia. PWN, Warszawa.
  • Szweykowska A., 1997. Fizjologia roślin. Wydawnictwo Naukowe UAM, Poznań.
  • Tao S., Jiao X. C., Chen S. H., Xu F. L., Li Y. J., Liu F. Z., 2006. Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage. Environ. Pollut. 140, 13-15.
  • Van Aken B., Yoon J. M., Schnoor J. L., 2004. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5, 7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). App. Environ. Microbiol. 70, 508-517.
  • Van Der Lelie D., Barac T., Taghavi S., Vangronsveld J., 2005. Response to Newman: New uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol. 23, 8-9.
  • Walker C. H., Hopkin S. P., Sibly R. M., Peakall D. B., 2002. Podstawy ekotoksykologii. PWN, Warszawa.
  • Wang G.-D., Li Q.-J., Luo B., Chen X.-Y., 2004. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nature Biotechnol. 22, 893-897.
  • Wang X., White J. C., Gent M. P. N., Iannucci-berger W., Eitzer B. D., Incorvia Mattina M. J., 2004. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Int. J. Phytoremed. 6, 363-385.
  • White J. C., Incorvia Mattina M. J., Lee W.-j., Eitzer B. D., Iannucci-berger W., 2003. Role of organic acids in enhancing the desorption and uptake of weathered p,p'-DDE by Cucurbita pepo. Environ. Pollut. 124, 71-80.
  • Wild E., Dent J., Barber J. L., Thomas G. O., Jones K. C., 2004. A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ. Sci. Techno. 38, 4195-4199.
  • Wild E., Dent J., Barber J. L., Thomas G. O., Jones K. C., 2005. Real-time visualization and quantification of PAH photodegradation on and within plant leaves. Environ. Sci. Techno. 39, 268-273.
  • Wild E., Dent J., Barber J. L., Thomas G. O., Jones K. C., 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ. Sci. Techno. 39, 3695-3702.
  • Wild E., Dent J., Barber J. L., Thomas G. O., Jones K. C., 2006. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ. Sci. Techno. 40, 907-916.
  • Wójcik P., Tomaszewska B., 2005. Biotechnologia w remediacji zanieczyszczeń organicznych. Biotechnologia 4, 158-173.
  • Zemleduch A., Tomaszewska B., 2007. Komórkowy system detoksykacji zanieczyszczeń organicznych u roślin. Post. biol. kom. 34, 635-649.
  • Zemleduch A., Tomaszewska B., 2007. Organizmy modyfikowane genetycznie w fitoremediacji związków organicznych. Biotechnologia 4.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.