Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 3-4 | 383-391
Article title

Ewolucja fizjologicznych funkcji melatoniny u bezkręgowców

Title variants
Evolution of physiological functions of melatonin in invertebrates
Languages of publication
Melatonin is one of most widespread biological particles. Till now its presence is confirmed in vast range of organisms belonging to bacteria, protozoa, plants, fungi and animals. Recent studies show a large number of roles played by this small molecule. They vary from protective role in intracellular metabolism to involvement in photoperiodism and circadian behaviour and all this only among vertebrates. Those facts rise question about processes which lead to such diversity. We looked into the model of evolution of melatonin functions proposed by Hardeland and Poeggeler (2003). Authors suggest protective role in cell metabolism as free radical scavenger and antioxidant as the preliminary function of melatonin. Its relevance rose in cooperation with increasing concentration of oxygen both in cell and in environment (as a result of development of photosynthesis and mitochondria). As the photosynthesis is a circadian process concentration of oxygen in early atmosphere could also varied with circadian rhythm what could in turn cause rhythmic demand for antioxidant action. This process would later lead to endogenous circadian oscillation of melatonin concentration triggered by light what resulted in involvement in photoperiodically regulated actions. We confronted the proposed model with results of melatonin-linked studies held on invertebrates - a polyphyletic taxon which presents many types of organisms physiology and morphology. In some cases research teams found multilevel involvement of melatonin in biology of investigated species. On the contrary to vertebrates, invertebrates show not only day-peak pattern of melatonin circadian concentration. Also night peaks and lack of rhythm ware observed even in closely related species (e.g. Decapoda). Correlation between presence of exogenous melatonin and circadian behaviour modification was also shown in a few species. In spite of limited data and not large number of species investigated we can conclude that the model fits available data pretty well. Interesting conclusion of this review is that the new function of melatonin does not replace the older one, only develops in parallel. The natural selection process does not create a new attribute in response to environment challenge, it only adopts one of existing features of organisms.
Physical description
  • Zakład Hydrobiologii, Wydział Biologii, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Polska
  • Zakład Fizjologii Zwierząt, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Abran D., Anctil M., Ali M. A., 1994. Melatonin activity rhythms in eyes and cerebral ganglia of Aphysia Californica. Gen. Comp. Endocrinology 96, 215-222.
  • Agapito M., Herrero B., Pablos M. I., Miguel J. L., Recio J. M., 1995. Circadian rhythms of melatonin and N-acetylotransferaseactivity in Procambarus clarkii. Comp. Biochem. Physiol. 112A, 179-185.
  • Arnoult F., Vernet G., 1995. Inhibition of regeneration by melatonin in nemertine worm of the genus Lineus. Comp. Biochem. Physiol. 110A, 319-328.
  • Arnoult F., Vivien-Roels B., Vernet G., 1994. Melatonin in nemertine worm Lineus lacteus, identification of daily variations. Biol. Signals 3, 296-301.
  • Balzer I., Hardeland R., 1991. Photoperiodism and Effects of Indoleamines in a Unicellular Alga, Gonyaulax polyedra. Science 253, 795-797.
  • Balzer I., Hardeland R., 1997. Daily variations of immunoreactive melatonin in the visual system of cry fish. Biol. Cell 89, 539-543.
  • Bembenek J., sehadova h., ichihara N., Takeda M., 2005. Day/night fluctuations in melatonin content, arylalkylamine N-acetyltransferase activity and NAT mRNA expression in the CNS, peripheral tissues and hemolymph of the cockroach, Periplaneta americana. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 27-36.
  • Blanc A., Vivien-Roels B., Pévet P., Attia J., Buisson B., 2003. Melatonin and 5-methoxytryptofanol (5-ML) in nervous and/or neurosensory structures of a gastropod mollusca (Helix aspersa maxima); synthesis and diurnal rhythms. Gen. Comp. Endocrinol. 131, 168-175.
  • Gao N., Hardie J., 1997. Melatonin and the Pea Aphid, Acyrthosiphon pisum. J. Insect Physiol. 43, 615-620.
  • Hardeland R., Poeggeler B., 2003. Non-vertebrate melatonin. J. Pineal Res. 34, 233-241.
  • Huybrechts J., De Loof A., Schoofs L., 2005. Melatonin-induced neuropeptide release from isolated locust corpora cardiaca. Peptides 26, 73-80.
  • Itoh M. T., Sumi Y., 1998. Melatonin and serotonin N-acetyltranferase activity in developing eggs of cricket Gryllus bimaniculatus. Brain Res. 781, 91-99.
  • Itoh M. T., Hattori A., Sumi Y., Suzuki T., 1995a. Day-night changes in melatonin levels in different organs of the cricket (Gryllus bimaculatus). J. Pineal Res. 18,165-169.
  • Itoh M. T., Hattori A., Nomura T., Sumi Y., Suzuki T., 1995b. Melatonin and arylalkylamine N-acetyltransferase activity in the silkworm, Bombyx mori. Mol. Cell Endocrinol. 115, 59-64.
  • Itoh M. T., shinozawa T., Sumi Y., 1999. Circadian rhythms of melatonin-synthesizing enzyme activities and melatonin levels in planarians. Brain Res. 830, 165-173.
  • Lerner A. B., Case J. D., Takakashi Y., Lee T. H., Mori W., 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587.
  • Mccord C. P., Allen F. P., 1917 Evidences associating pineal gland function with alterations in pigmentation. J. Exp. Zool. 23:207-214.
  • Mechawar N., Anctil M., 1997. Melatonin in a primitive metazoan, Seasonal changes of levels and immunohistochemical visualization in neurons. J. Comp. Neurol. 387, 243-254.
  • Morita M., Hall F., Best J. B., Gern W., 1987. Photoperiodic modulation of cephalic melatonin in planarians. J. Exp. Zool. 241, 383-388.
  • Pandi-Perumal S. R, Srinivasan V., Maestroni G. J. M., Cardinali D. P., Poeggeler B., Hardeland R., 2006. Nature's most versatile biological signal? FEBS J. 276, 2813-2838.
  • Takeda M., Westrom W., Hamil A., Goldman B., 1985. Neuropeptide and monoamine immunoreactivity of the circadian pacemaker in Periplaneta. Biomed. Res. 6, 395-406.
  • Tilden A. R., Rasmussen P., Awantang R. M., Furlan S., Goldstein J., Palsgrove M., Sauer A., 1997. Melatonin cycle in the fiddler crab Uca pugilator and influence of melatonin on limb regeneration. J. Pineal Res. 23, 142-147.
  • Tilden A. R., Alt J., Brummer K., Groth R., Herwig K., Wilson A., Wilson S., 2001. Influence of photoperiod on N-acetyltransferase activity and melatonin in the fiddler crab Uca pugilator. Gen. Comp. Endorcinol. 122, 233-237.
  • Tilden A. R., Brauch R., Ball R., Janze A. M., Ghaffari A. H., Sweeney C. T., Yurek C. J., Cooper R. L., 2003. Modulatory effects of melatonin on behavior, hemolymph metabolites, and neurotransmitter release in crayfish. Brain Res. 992, 252-262.
  • Vivien-Roels B., Pevet P., 1986. Is melatonin an evolutionary conservative molecule involved in the transduction of photoperiodic information in all living organisms? Adv. Pineal Res. 1, 153-157.
  • Vivien-Roels B., Pevet P., 1993. Melatonin, presence and formation in invertebrates. Experientia 49, 642-647.
  • Vivien-Roels B., Pévet P., Beck O., Fèvre-montagne M., 1984. Identification of melatonin in the compound eye of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas-chromatography-mass spectrometry. Neurosci. 49, 153-157.
  • Wetterberg L., Hayes D. K., Halberg F., 1987. Circadian rhythms of melatonin in the brain of the face fly, Musca autumnalis. De Geer Chronobiologia 14, 377-381.
  • Withyachumnarnkul B., Buppaninoj K., Pongsa-asawapaiboom A., 1992. N-acetyltransferase and melatonin levels in the optic lobe of the giant freshwater prawns, Macrobrachium rosenbergii de Man. Comp. Biochem. Physiol. 102A, 703-707.
  • Withyachumnarnkul B., Pongtippatee P., Ajpru S., 1995. N-acetyltransferase, hydroxyindole-O-methyltransferase and melatonin in the optic lobes of the giant tiger shrimp Penaeus monodon. J. Pineal Res. 18, 217-221.
  • Withyachumnarnkul B., Rachawong S., Pongsa-asawapaiboom A., Sumridthong A., 1999. Sexual dimorphism in N-acetyltransferase and melatonin levels in the giant freshwater prawn Macrobrachium rosenbergii de Man. J. Pineal Res. 26, 174-177.
  • Yamamoto H., Watari Y., Arai T., Takeda M., 2001. Melatonin in drinking water influences a circadian rhythm of locomotor activity in the house cricket, Acheta domesticus. J. Insect Physiol. 47, 943-949.
  • Yoshizawa Y., Wkabayashi K., Shinozawa T., 1991. Inhibition of planarian regeneration by melatonin. Hydrobiologia 227, 31-40.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.