Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 3-4 | 349-359
Article title

Kompleksy synaptonemalne

Title variants
Synaptonemal complexes
Languages of publication
Genetic recombination is the main cause of changeability of different organisms. Synaptonemal complex (SC) is a protein structure which controls correct course of coniugation and the frequency of crossing over. It binds chromosomes into the biwalents. This structure consists of central element (CE) and two lateral elements (LE) related to the chromatin. There are observed ovale structures between lateral elements called recombination nodules (RNs). Recombination nodules are multienzimatic complexes, which catalize DSBs (Doubble Strand Breakes) and crossing over process. Synaptonemal complex is very important in meiosis pairing, but there are several taksons which do not form this structure, for example D. melanogaster male. Interesting modifications of synaptonemal comlexes are observed in heterohromosomes, which show slight homology, like the ZW pair in birds or some insects. A few organizms, such as eutherian mammals, form Danse Plate between heterochromosomes instead SC. There is observed interlocking during pairing sometimes, when chromosome or bivalent stuck between another pair of homologs. There are also observed in many organisms policomlexes consisting of synaptonemal's complex elements. In most events immunostaining metods are used to test function and structure of synaptonemal's complex elements.
Physical description
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Instytut Bioinżynierii i Hodowli Zwierząt, Akademia Podlaska, B. Prusa 14, 08-110 Siedlce, Polska
  • Albini S. M., Jones G. H., 1987. Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95, 324-338.
  • Anderson L. K., Stack S. M., 2005. Recombination nodules in plants. Cytogenet. Genome Res. 109, 198-204.
  • Anderson L. K., Offenberg H. H., Verkuijen W. M. H. C., Heyting C. A., 1997. RecA-like proteins are components of early meiotic nodules in lily. Proc. Natl. Acad. Sci. USA 94, 6868-6873.
  • Börner G. V., Kleckner N., Hunter N., 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29-45.
  • Burgoyne P. S., 1982. Genetic homology and crossing over in the X and Y chromosomes of Mammals. Hum. Genet. 61, 85-90.
  • Carpenter A. T. C., 1975. Electron microscopy of meiosis in Drosophila melanogaster females. I. The RN- a recombination-associated structure at pachytene? Proc. Natl. Acad. Sci. USA 72, 3186-3189.
  • Carpenter A. T. C., 1988. Thoughts on recombination nodules, meiotic recombination and chiasmata. [W:] Genetic Recombination. Kucherlapati R., Smith G. R. (red.). American Society of Microbiology, Washington D.C., 529-548
  • de Boer E., Heyting C., 2006. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115, 220-234.
  • de Vries F. A., de Boer E., van den Bosch M., Baarends W. M., Ooms M., Yuan L., Liu J. G., van Zeeland A. A., Heyting C., Pastink A., 2005. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376-1389.
  • Dierich A. J., van Marle J., Heyting C., Vink A. C. G., 1992. Ultrastructural evidence for a triple structure of the lateral element of the synaptonemal complex. J. Sruct. Biol. 109, 196-200.
  • Dobson M. J., Paerlman R. E., Karaiskakis A., Spyropoulos B., Moens P., 1994. Synaptonemal complex: occurence, epitope, mapping and chromosome disjunction. J. Cell Sci. 107, 2749-2760.
  • Dresser M. E., 1987. The synaptonemal complex and meiosis: An immunocytochemical approach. [W:] Meiosis. Moens P. B. (red.). Academic Press Inc., New York, 245-274.
  • Eijpe M., Heyting C., Gross B., Jessberger R. J., 2000. Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J. Cell Sci. 113, 673-682.
  • Fawcett D. W., 1956. The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J. Biophys. Biochem. Cytol. 2, 403-406.
  • Franklin A. E., McElver J., Sunjevaric I., Rothstein R., Bowen B., Cande W. Z., 1999. Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11, 809-824.
  • Fung J. C., Marshall W. F., Dernburg A., Agard D. A., Sedat J. W., 1998. Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J. Cell Biol. 141, 5-20.
  • Fung J. C., Rockmill B., Odell M., Roeder G. S., 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795-802.
  • Henderson K. A., Keeney S., 2004. Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc. Natl. Acad. Sci. USA 101, 4519-4524.
  • Heyting C., Dettmers R. J., Dietrich A. J., Redeker E. J., Vink A. C., 1988. Two major components of synaptonemal complexes are specific for meiotic prophase nuclei. Chromosoma 96, 325-332.
  • Heyting C. A, Dietrich J. J., Moens P. B., Dettemers R. J., Offenberg H. H., Redeker E. J. W., Vink A. C. G., 1989. Synaptonemal complex protein.Genome 31, 81-87.
  • Heyting C., Moens P. B., von Raamsdonk W., Dietrich A. J., Vink A. C., Redeker E. J., 1987. Identification of two major components of the lateral elements of synaptonemal complexes of the rat. J. Cell Biol. 43, 148-154.
  • Higgins J. D., Armstrong S. J., Franklin F. C., Jones G. H., 2004. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev. 18, 2557-2570.
  • Hollingsworth N. M., Ponte L., Halsey C., 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9, 1728-1739.
  • Holm P. B., 1985. Ultrastructural characterization of meiosis. Biol. Skif. (Copenhagen) 25, 39-90.
  • Holm P. B., Rasmussen S. W., 1980. Chromosome pairing,recombination nodules and chiasma formation in diploid Bombyx males. Carlsberg Res. Comm. 45, 483-548.
  • Hunter N., Borts R. H., 1997. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11, 1573-1582.
  • Lamb N. J., Cavadore J. C., Labbe J. C., Maurer R. A., Fernandez A., 1991. Inhibition of cAMP-dependent protein kinase plays a key role in the induction of mitosis and nuclear envelope breakdown in mammalian cells. EMBO J. 10, 1523-1533.
  • Loidl J., 2006. S. pombe linear elements: the modest cousinsof synaptonemal complexes. Chromosoma 115, 260-271.
  • Loidl J., Scherthan H., 2004. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J. Cell Sci. 117, 5791-5801.
  • Maguire M. P., Riess R. W., 1994. The relationship of homologous synapsis and crossing over in a maize inversion. Genetics 137, 281-288.
  • Marec F., 1996. Synaptonemal complexes in insects. Pergamon 3, 205-233.
  • Marec F., Traut W., 1993. Synaptonemal complex in female and male meiotic prophase of Ephestia kuehniella (Lepidoptera). Herdity 71, 394-404.
  • Meuwissen R. L., Offenberg H. H., Dietrich A. J., Riesewijk A., van Iersel M., Heyting C., 1992. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 11, 5091-5100.
  • Moens P. B., 1994. Molecular perspectives of chromosome pairing at meiosis. BioEssays 16, 101-106.
  • Moens P. B., Heyting C., Dietrich A. J. J., van Raamsdonk W., Chen Q., 1987. Synaptonemal Complex Antigen Location and Conservation. J. Cell Biol. 105, 93-103.
  • Moens P. B., Kolas N. K., Tarsounas M., Marcon E., Cohen P. E., Spyropoulos B., 2002. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611-1622.
  • Moses M. J., 1956. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem. Cytol. 2, 215-218.
  • Page J., de la Fuente R., Gómez R., Calvente A., Viera A., Parra M. T., Santos J. L., Berríos S., Fernández-Donoso R., Suja J. Á., Rufas J. S., 2006. Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma 115, 250-259.
  • Penkina M. V., Karpowa O. I., Bogdanov F. Yu., 2002. Synaptonemal Complex Proteins: Specyfic Proteins of Meiotic Chromosomes. Mol. Biol. 36, 304-313.
  • Pigozzi M. I., Solari A. J., 2003. Differential immunolocalization of a putative Rec8p in meiotic autosomes and sex chromosomes of triatomine bugs. Chromosoma 112, 38-47.
  • Rasmussen S. W., 1986. Initiation of synapsis and interlocking of chromosomes during zygotene in Bombyx spermatocytes. Carlsberg Res. Comm. 51, 401-432.
  • Rasmussen S. W., Holm P. B., 1978. Human meiosis II. Chromosome pairing and recombination nodules in human spermatocytes. Carlsberg Res. Comm. 43, 275-327.
  • Ross-Macdonald P., Roeder G. S., 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79, 1069-1080.
  • Schmekel K., Daneholt B., 1995. The central region of the synaptonemal complex revealed in three dimensions. Trend Cell Biol. 5, 239-242.
  • Schmekel K., Daneholt B., 1998. Evidence for close contact between recombination nodules and the central element of the synaptonemal complex. Chromosome Res. 6, 155-159.
  • Solari A. J., 1977. Ultrastructure of the synaptic autosomes and the ZW bivalent in chicken oocytes. Chromosoma 64, 155-165.
  • Solari A. J., Moses M. J., 1973. The structure of the central region in the synaptonemal complexes of hamster and cricket spermatocytes. J. Cell Biol. 56, 145-152.
  • Solari A. J., Bianchi N. O., 1975. The synaptic behaviour of the X and Y chromosomes in the marsupial Monodelphis dimidiata. Chromosoma 52, 11-25.
  • Sung P., Krejci L., Van Komen S., Sehorn M. G., 2003. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729-42732.
  • Tarsounas M., Morita T., Pearlman R. E., Moens P. B., 1999. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147, 207-220.
  • Tesse S., Storlazzi A., Kleckner N., Gargano S., Zickler D., 2003. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc. Natl. Acad. Sci. U S A 100, 12865-12870.
  • Wang Y. X., Marec F., Traut W., 1993. The synaptonemal complex complement of the wax moth, Galleria mellonella. Hereditas 118, 113-119.
  • Weith A., Traut W., 1980. Synaptonemal complexes with associated chromatin in a moth Ephestia Kuehniella Z. The fine srtucture of the W chromosomal heterochromatin. Chromosoma 78, 275-291.
  • Wolf K. W., Mesa A., 1993. Synaptonemal polycomplexes in spermatids: a characteristic trait of Orthoptera? Chromosome Res. 1, 181-188.
  • Zickler D., 2006. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158-174.
  • Zickler D, Kleckner N., 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603-754.
  • Zickler D., Moreau P. J., Huynh A. D., Slezec A. M., 1992. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132, 135-148.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.