Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 1-2 | 1-8
Article title

Odwrócone struktury lipidowe i ich rola w procesach biologicznych

Title variants
The inverted lipid structures and their role in biological processes
Languages of publication
Lipids may form two main types of structures: bilayer, and inverted structures. The inverted structures can form either cylindrical inverted hexagonal structures or spherical and have inverted micelles known also as cubic phase. The type of structure formed depends on the chemical texture of lipids, degree of hydratation of their polar groups’, and several other external factors, such as pH, temperature, and presence of some chemicals or salt ions. The inverted structures play an important role in several biological processes. They can promote membrane fusion. This was applied to design of lipid based delivery systems for a lot of chemicals which have to be placed inside the cells. These structures are also used in the so-called micellar enzymology and as a new approach in homogeneous enzyme immunoassay utilizing the systems of surfactant reversed micelles in organic solvents for determination of the catalytic activity of the enzymes solubilized in such systems. Cell-free translation was also observed in reversed micelles. Some enzymes as violaxanthin de-epoxidase, protein kinase C and ATP-ase require for their activity lipids creating inverted structures. These lipids are also necessary in the transport of some proteins through membranes.
Physical description
  • Zakład Biochemii, Akademia Pedagogiczna im. Komisji Edukacji Narodowej, Podchorążych 2, 30-084 Kraków, Polska
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Bishop D. G., Kenrick J. R., Bayston J. H., Macpherson A. S., Johns S. R., 1980. Monolayer properties of chloroplast lipids. Biochim Biophys. Acta 602, 248-259.
  • Bruce B. D., 1998. The role of lipids in plastid protein transport. Plant Mol. Biol. 38, 223-246.
  • Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J., 1993. Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 318, 71-76.
  • Cullis P. R., de Kruijff B., 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399-420.
  • De Kruijff B., Verkleij A. J., Leunissen-Bijvelt J., Van Echteld C. J., Hille J., Rijnbout H., 1982. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin. Biochim. Biophys. Acta 693, 1-12.
  • Demel R. A., Dorrepaal E., Ebskamp M. J. M., Smeekens J. C. M., de Kruijff B., 1998. Fructans interact strongly with model membranes. Biochim. Biophys. Acta 1375, 36-42.
  • Ellens H. Bentz, J., Szoka F. C., 1985. H+- and Ca2+-induced fusion and destabilisation of liposomes. Biochemistry 24, 3099-3106.
  • Gawrisch K., Holte L. L., 1996. NMR investigations of non-lamellar phase promoters in the lamellar phase state. Chem. Phys. Lipid. 81, 105-116.
  • Goss R., Lohr M., Latowski D., Grzyb J., Vieler A., Wilhelm C., Strzałka K., 2005. Role of hexagonal structure-forming lipids in diadionoxanthin and violaxanthin solubiliyation and de-epoxidation. Biochemistry 44, 4028-36.
  • Goss R., Latowski D., Grzyb J., Vieler A., Lohr M., Wilhelm C., Strzalka K., 2006. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Biochim. Biophys. Acta 10.1016/j.bbamem.2006.06.006.
  • Gounaris K., Mannock D. A., Sen A., Brain A. P. R., Williams W. P., Quinn P. J., 1983a. Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non bilayer lipid transitions in higher plant chloroplasts. Biochim. Biphys. Acta 732, 229-242.
  • Gounaris K., Sen A., Brain A. P. R., Quinn P. J., Williams W. P., 1983b. The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim. Biophys. Acta 728, 129-139.
  • Gruner S. M., 1985. Intrinsic curvature hypothesis for biomembrane lipid composition: a rolefor nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665-3669.
  • Hafez I. M., Cullis P. R., 2001. Roles of lipid polymorphism in intracellural delivery. Adv. Drug Deliv. 47, 139-148.
  • Harańczyk H., Strzałka K., Dietrich W., Blicharski J. S., 1995. 31P-NMR observation of the temperature and glycerol induced non-lamelar phase formation in wheat thylakoid membranr. J. Biol. Phys. 21, 125-139.
  • Hope M. J., Cullis P. R., 1979. The bilayer stability of inner monolayer lipids from the human erythrocyte. FEBS Lett. 107, 323-326.
  • Hope M. J., Cullis P. R., 1980. Effects of divalent cations and pH on phosphatidylserine model membranes: a 31P-NMR study. Biochim. Biophys. Res. Commun. 92, 846-852.
  • Hope M. J., Walker D. C., Cullis P. R., 1983. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochim. Biophys. Res. Commun. 110, 15-22.
  • Hsieh C. H., Sue S. C., Lyu P. C., Wu W. G., 1997. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys. J. 73, 870-877.
  • Hui S.-W., Sen A., 1989. Effect of lipid packing on polymorphic phase behavior and membrane properties. Proc. Natl. Acad. Sci. USA 86, 5825-5829.
  • Israelachvili J. N., Mitchell D. J., 1975. A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta 389, 13-19.
  • Israelachvili J. N., Mitchell D. J., Ninham B. W., 1976. Theory of self-assamble of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. (Faraday II) 72, 1525-1568.
  • Isrealachvili J. N., Marcelja S., Horn R. G., 1980. Physical principles. of membrane organization. Q. Rev. Biophys. 13, 121-200.
  • Kabanov A. V., Levashov A. V., Klyachko N. L., Namyotkin S. N., Pshezhetsky A. V., 1988. Enzymes entrapped in reversed micelles of surfactans in organic solvents: a theoretical treatment of the catalytic activity regulation. J. Theor. Biol. 133, 327-343.
  • Kabanov A. V., Khrutskaya M. M., Ermin S. A., Klyachko N. L., Levashov V., 1989. A new way in homogeneous immunoassay: reversed miceallar systems as a medium for analysis. Anal. Biochem. 181, 145-148.
  • Kilarski W., 1989. Molekularna budowa błony komórkowej. Fizjologia i Farmakologia błony komórkowej. Ossolineum.
  • Killian J. A., Koorengevel M. C., Bouwstra J. A. Gooris G., Dowhan W., de Kruijff B., 1994. Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim. Biophys. Acta 1189, 225-232.
  • Koynova R., Tenchov B., Quinn P., 1989. Sugars favor formation of hexagonal phase at the expense of the lamellar liquid-crystalline phase in hydrated phosphatidylethanolamines. Biochim. Biophys. Acta 980, 377-380.
  • Latowski D., Åkerlund H.-E., Strzałka K., 2004. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43, 4417-20.
  • Luzzati V., Husson F., 1962. The structure of the liquid-crystalline phases of lipid-water systems. J. Cell. Biol. 12, 207-219.
  • Mannock D. A., Brain A. P. R., Williams W. P., 1985. The phase behaviour of 1,2-diacyl-3monogalactosyl-sn-glycerol derivatives. Biochim. Biophys. Acta 817, 289-298.
  • Marsh D., 1996. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys. J. 70, 2248-2255.
  • McIntosh T. J., 1996. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem. Phys. Lipids 81, 117-131.
  • Mitchell D. C., Kibelbek J., Litman B. J. 1992, Effect of phosphorylation on receptor conforamtion: The metarhodopsin I - metarhodopsin II equilibium in multiply phosphorylated rhodopsin. Biochem. 31, 8107-8111.
  • Nametkin S. N., Kolosov M. I., Ovodov S. Y., Alexandrov A. N., Levashov A. V., Alakhov V. Y., Kabanov A. 1992, Cell-free translation in reversed micelles. FEBS Lett. 309, 330-332.
  • Pascher I., Lundmark M., Nyholm P.-G., Sundell S., 1992. Crystal structures of membrane lipids. Biochim. Biophys. Acta 1113, 339-373.
  • Pinnaduwage P., Bruce B. D., 1996. In vitro interaction between a chloroplast transit peptide and chloroplast outer envelope lipids is sequence-specific and lipid class-dependent. J. Biol. Chem. 271, 32907-32915.
  • Quinn P. J., Williams W. P., 1983. The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737, 223-266.
  • Rapoport T. A., 1992, Transport of proteins across the endoplasmic reticulum membrane. Science 258, 931-936.
  • Rietveld A. G., Chupin V. V., Koorengevel M. C., Wienk H. L., Dowhan W., de Kruijff B., 1994. Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J. Biol. Chem. 269, 28670-28675.
  • Rivas E., Luzzati V., 1969. Polymorphisme des lipides polaires et des galacto-lipides de chloroplastes de maïs, en présence d'eau. J. Mol. Biol. 41, 261-275.
  • Roy R. C. Y., 1994 Destabilisation of lamellar dispersion of thylakoid membrane lipids by sucrose. Biochim. Biophys. Acta 1212, 129-133.
  • Sen A., Hui S.-W., 1988. Direct measurement of headgroup hydration of polar lipids in inverted micelles. Chem. Phys. Lipids 49, 179-184.
  • Sen A., Williams W. P., Quinn P. J., 1981. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim Biophys Acta 663, 380-389.
  • Sen A., Mannock D. A., Collins D. J., Quinn P. J., Williams W. P., 1983. Thermotropic phase properties and structure of 1, 2-distearoylgalactosylglycerols in aqueous systems. Proc. Royal Soc. London. Series A, Math. Phys. Sci. 388, 247.
  • Shipley G. G., Green, J. P., Nichols B. W., 1973. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim. Biophys. Acta 311, 531-544.
  • Sprague G. S., Staehelin L. A., 1984. Effect of reconstitution method on the structural organization of isolated chloroplast membrane lipids. Biochim. Biophys. Acta 777, 306-322.
  • Tanaka T., Li S. J., Kinoshita K., Yamazaki M., 2001. La3+ stabilizes the hexagonal II (HII) phase in phosphatidylethanolamine membranes. Biochim. Biophys. Acta 1515, 189-201.
  • Thomas P. T., Brain A. P. R., Quinn P. J., Williams W. P., 1985. Low pH and phospholipase A2 treatment induce the phase-separation of non-bilayer lipids within pea chloroplast membranes. FEBS Lett. 183, 1, 161-166.
  • van Venetië R., Verkleij A. J., 1982. Possible role of non-bilayer lipids in the structure of mitochondria: a freeze-fracture electron microscopy study. Biochim.Biophys. Acta 692, 397-405.
  • Verkleij A. J., 1984. Lipidic intramembranous particles. Biochim. Biophys. Acta 779, 43-63.
  • Webb M., Green B., 1991. Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biphys. Acta 1060, 133-158.
  • Yeagle P. L., Sen A., 1986. Hydration and the lamellar to hexagonal II phase transition of phosphatidylethanolamine. Biochem. 25, 7518-7522.
  • Zidovetzki R., 1996. Role of lipid membrane structure in the mechanism of activation of protein kinase C and phospholipase A2. [W:] Structural and Biological Roles of Lipids Forming Non-Lamellar Structures. Epand R. M. (red.). Advances in Lipid Research, Academic Press, San Diego, CA.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.