Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 1-2 | 181-196
Article title

Strefa hyporeiczna, jej funkcjonowanie i znaczenie

Title variants
The hyporheic zone, its functioning and meaning
Languages of publication
The hyporheic zone is defined as a subsurface volume of sediment and porous space adjacent to a stream through which stream water readily exchanges. Although the hyporheic zone physically is defined by the hydrology of a stream and its surrounding environment, it has a strong influence on stream ecology, and stream biogeochemical cycling. Thus, the hyporheic zone is an important component of the stream ecosystems. The formation of the environmental gradients in the hyporheic zone is higly determinated by the hydrologic exchange between surface water and groundwater. The hydrologic exchange can be subdivided into three types: a) infiltration (downwelling surface water) b) exfiltration (upwelling interstitial water) c) horizontal advection (subsurface flow along the stream). The exchange of water, nutrients, and organic matter occur in response to variation in discharge and bed topography and porosity. Although the hyporheic zones extent is controlled by surface-water penetration into the subsurface, hyporheic water is generally composed of a mixture of surface water and groundwater. From a biogeochemical perspective, groundwater is generally low in dissolved oxygen and enriched in inorganic solutes compared to stream water. Thus, biogeochemical gradients exist within the hyporheic zone between two extremes defined by the surfacewater and groundwater end members. This makes the hyporheic zone a very active location of biogeochemical transformation of nutrients and other dissolved solutes. The upweling subsurface water supplies stream organisms with nutrients while the downwelling stream water provides dissolved oxygen and organic matter to microbes and invertebrates in the hyporheic zone. Hyporheic biogeochemical processes strongly influence the quality of surface water. The hyporheic zone is an ecotone between stream water and groundwater environments, combining not only biogeochemical but also physical characteristics of both environments. The hyporheic zone provides an ideal habitat for a wide array of microbes and invertebrates.
Physical description
  • Zakład Hydrobiologii, Instytut Biologii Uniwersytet w Białymstoku, Świerkowa 20 B, 15-950 Białystok, Polska
  • Allan J. D., 1998. Ekologia wód płynących. Wyd. Naukowe Pwn, Warszawa.
  • Alley W. M., Healy R. W., Labaugh J. W., Reilly T. E., 2002. Flow and Storage in Groundwater Systems. Science 296, 1985-1990.
  • Angelier E., 1953. Recherches écologiques et biogéographiques sur la faune des sables submergées. Arch. Zool. Exp. Gen. 90, 37-161.
  • Bajkiewicz-Grabowska E., Mikulski Z., 1999. Hydrologia ogólna. Wydawnictwo Naukowe PWN, Warszawa.
  • Boulton A. J., Findlay S., Marmonier P., Stanley E. H., Vallett H. M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst. 29, 59-81.
  • Bretschko G., 1991. Bed sediments, groundwater and stream ecology. Verhandlungen Der Internatinalen Vereinigung Für Theoretishe Und Angewandte. Limnologie 24, 1957-1960.
  • Bretschko G., 1992. The sediment fauna in the uppermost parts of the impoudment 'Altenwörth' (Danube, stream km 2005 and 2007). Arch. Hydrobiol. Suppl. 84, 131-168.
  • Brunke M., 1998. The Influence of Hydrological Exchange Patterns on Environmental Gradients and Community Ecology in Hyporheic Interstices of a Prealpine River. Diss Eth 12734, Zurich.
  • Brunke M., Gonser T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol. 37, 1-33.
  • Brunke M., Gonser T., Grieder E., Hoehn E., Huggenberger P., 1995. Der Einfluss von Infiltration und Exfiltration auf die Ausbildung physikochemischer Gradienten im Hyporheal. Deutsche Gesellschaft Für Limnologie, Jahrestagung 1995 in Berlin, 317-322.
  • Brunke M., Gonser T., Grieder E., 1998a. Influence of surface and subsurface flow on distribution of particulate organic matter and inorganic fine particles in perialpine stream sedimemts. Conf. Hydrology, Water Resources And Ecology in Headwaters, 371-378.
  • Brunke M., Gonser T., Grieder E., 1998b. Environmental gradient patterns in hyporheic interstices: A model based on hydrological exchange processes. [w:] Adwances in River Bottom Ecology. Bretschko G, Helesic J. (red). Backhuys, Leiden, 23-30.
  • Butturini A., Battin T. J., Sabater F., 2000. Nitrification in stream sediment biofilms: the role of ammonium concentration and Doc quality. Water Res. 34, 629-639.
  • Chapelle F. H., 2000. The significance of microbial processes in hydrogeology and geochemistry. Hydrogeol. J. 8, 41-46.
  • Chappuis P. A., 1942. Eine neue Methode zue Untersuchung der dwasserfauna. Acta Sc University of Francico-josephina 6, 1-7.
  • Chełmicki W., 2002. Woda. Zasoby, Degradacja, Ochrona. Wyd. Naukowe Pwn, Warszawa.
  • Chełmicki W., 1997. Degradacja i ochrona wód. Wyd. Uj Instytut Geografii, Kraków.
  • Claret C., Marmonier P., Bravard J. P., 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquatic Sci. 60, 33-55.
  • Cozzetto K., Mcknight D., Nylen T., Fountain T., 2006. Experimental investigations into processes controling stream and hyporheic temperatures, Fryxell Basin, Antarctica. Adv. Water Resources 29, 130-153.
  • Danielopol D. L., 1982. Phreatobiology reconsidered. Polskie Archiwum Hydrobiologii 29, 375-386.
  • Danielopol D. L., 1989. Groundwater fauna associated with riverine aquifers. J. North Am. Bentol. Soc. 8, 18-35.
  • Danielopol D. L., Marmonier P., 1992. Aspects of research on groundwater along the Rhone, Rhine and Danube. Regul. Rivers 7, 5-16.
  • Dent C. L., Curro H. J., 1999. Modelling nutrient-periphyton dynamics in streams with surface-subsurface exchange. Ecol. Modelling 122, 97-116.
  • Edwards R.t., 1998. The hyporheic zone. [w:] River Ecology And Management. Naiman R. J., Bilby R. E. (red.). Lessons From the Pacific Coastal Ecoregion. Springer, New York, 399-429.
  • Edwardson K. J., Bowden W. B., Dahm C., Morrice J., 2003. The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska. Adv. Water Resources 26, 907-923.
  • Fisher S. G., Grimm N. B., Martí E., Holmes R. M., Jones J., Jeremy B. 1998. Material Spiraling in Stream Corridors: A Telescoping Ecosystem Model. Ecosystems 1, 19-34.
  • Fowler R. T., Death R. G., 2001. The effect of environmental stability on hyporheic community structure. Hydrobiologia 445, 85-95.
  • Folwer R. T., Scarsrook M. R., 2002. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. N. Z. J. Marine Freshwater Res. 36, 471-482.
  • Franken R. J. M., Storey R. G., Williams D., 2001. Biological, chemical and physical characteristics of downwelling and upweling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444, 183-195.
  • Fraser B. G., Williams D. D., Howard K. W. F., 1996. Monitoring Biotic and Abiotic Processes Across The Hyporheic/Groundwater Interface. Hydrogeol. J. 4, 36-50.
  • Fraser B. G., Williams D. D., 1998. Seasonnal bondary dynamics of a groundwater/ surface weater ecotone. Ecology 79, 2019-2031.
  • Gibert J., 1992. Groundwater ecology from the perspective of environmental sustainability. Proceedings of the First International Conference On Groundwater Ecology. [w:] American Water Resources Association. Stanford J. A., Simons J. J. (red.). Bethesda, Md, 3-13.
  • Groffman P. M., Gold A. J., Jacinthe P. A., 1998. Nitrous oxide production in riparian zones and groundwater. Nutr. Cycl. Agroecosyst. 52, 179-186.
  • Hahn H. J., 2005. Unbaited phreatic traps: A new method of sampling stygofauna. Limnologica 35, 248-261.
  • Hahn H. J., Matzke D., 2005. A comparision of stygofauna communities inside and outside groundwater bores. Limnologica 35, 31-44.
  • Hancock P. J., 2002. Human Impacts on the Stream-Groundwater Exchange Zone. Environ. Manage. 29, 763-781.
  • Harvey J. W., Fuller Ch. C., 1998. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resources Res. 34, 623-636.
  • Hefting M., Beltman B., Karssenberg D., Rebel K., Van Reissen M., Spijker M., 2006. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands. Environ. Pollut. 139, 143-156.
  • Hendricks S. P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J. North Am. Benthol. Soc. 12, 70-78.
  • Hendricks S. P., White D. S., 1995. Seasonal biogeochemical patterns in surface water, subsurface hyporheic, and riparian ground water in a temperate stream ecosystem. Arch. Hydrobiol. 134, 459-490.
  • Hinkle S. R., Duff J. H., Triska F. J., Laenen A., Gates E. B., Bencala K. E., Wentz D. A., Silva S. R., 2001. Linking hyporheic flow and nitrogen cycling near the Willamette River - a large river in Oregon, usa. j. Hydrol. 244, 157-180.
  • Hoehn E., 1998. Solute exchange between river water and groundwater in headwater environments. Conf. Hydrology. Water Resources And Ecology in Headwaters 248, 165-171.
  • Husmann S., 1971. Eine neue Methode zur Entnahame von Interstitialwasser aus subaquatischen Lockergesteinen. Arch. Hydrobiol. 68, 519-527.
  • Jancarkova I., Larsen T. A., Gujer W., 1997. Distribution of nitrifying bacteria in a shallow stream. Water Sci. Techno. 36, 161-166.
  • Jekatierynczuk-rudczyk E., 2003. Procesy hydrochemiczne strefy hyporeicznej małych rzek nizinnych. Xix Zjazd Polskiego Towarzystwa Hydrobiologicznego, Warszawa.
  • Jekatierynczuk-rudczyk E., 2005a. Transformacja składu chemicznego wody w strefie źródlisk nizinnych. [w:] Stan i Antropogeniczne Zmiany Jakości Wód w Polsce. Burchard J. (red.). Tom Iii, Uł, Łódź, 259-268.
  • Jekatierynczuk-rudczyk E., 2005b. Dynamika termiczno - tlenowa wód interstycjalnych w małych rzekach nizinnych. Przegląd Geol. 11, 190.
  • Jekatierynczuk-rudczyk E., 2006, Water Quality In The Hyporheic Zone Of Small Lowland Rivers. Polish J. Environ. Stud. 15, 453-456.
  • Jones J. R., Jeremy B. L., Holmes, R. M., 1996. Surface-subsurface interactions in stream ecosystems. Trends Ecol. Evol. 11, 239-242.
  • Karaman S. L., 1935. Die Fauna untrirdischer Gewässer Jugoslawiens. Verch. Intern. Verein. Theoret. Angeuandle Limnol. 7, 46-53.
  • Kellman L., Hillaire-marcel C., 1998. Nitrate cycling in streams: using natural abundances of No3-δ15N to measure in situ denitrification. Biogeochemistry 43, 273-292.
  • Lambs L., 2004. Interactions between groundwater and surface water at river banks and the confluence of rivers. J. Hydrol. 288, 312-326.
  • Lovley D. R., Anderson R. T. 2000. Influence of disimilatory metal reduction of fate of organic and metal contaminants in the subsurface. Hydrogeol. J. 8, 77-88.
  • Lwowicz M. I., 1979. Zasoby wodne świata. Państwowe Wydawnictwo Naukowe, Warszawa.
  • Olesn D. A., Townsend C. R., 2003. Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biol. 48, 1363-1378.
  • Orghidan T., 1959. Ein neure Lebensraum des unterirdischen Wassers, der hyporheische Biotop. Arch. Hydrobiol. 55, 392-414.
  • Packman A. I., Selehin M., 2003. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494, 291-297.
  • Pazdro Z., 1983. Hydrogeologia ogólna. Wyd. Geol., Warszawa.
  • Pennak R. W., Ward J. V., 1986. Interstitial fauna communities of the hyporheic and adjacent groundwater biotopem of a Kolorado mountain stream. Arch. Hydrobiol. Suppl. 74, 356-396.
  • Runkel R. L., Mcknight D. M., Rajaram H., 2003. Modeling hyporheic zone processes. Adv. Water Res. 26, 901-905.
  • Schwoerbel J., 1967. Das hyporheische interstitial als Grenzbiotop zwichen oberirdischem-und subterranem Ökosystem und seine Bedeutung für die Primär-Evolution von Kleinsthöhlenbewohnern. Arch. Hydrobiol. Suppl. 33, 1-62.
  • Sheibley R., W., Jackman A. P., Duff J. H., Triska F. J., 2003. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, mn. adv. Water Resources 26, 977-987.
  • Shibata H., Sugawara O., Toyoshima H., Wondzell S. M., Nakamura F., Kasahara T., Swanson F. J., Sasa K., 2004. Nitrogen dynamics in the hyporheic zone of a forested stream during a small storm, Hokkaido, Japan. Biogeochemistry 69, 83-104.
  • Skalski A. W., 1994. Fauna wód podziemnych Polski. Przegląd Zoologiczny 38, 35-50.
  • Słownik Hydrogeologiczny, 1997. Kleczkowski A. S., Różkowski A. (red.). Ministerstwo Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa, Warszawa.
  • Sophocleous M. A., 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52-67.
  • Sophocleous, M. A., 2003. Environmental implications of intensive groundwater use with special regard to streams and wetlands. [w:] Groundwater Intensive Use: Challenges And Opportunities. Custodio E., Llamas R., (red.). A. A. Balkema Publishers, Lisse, the Netherlands, 93-112.
  • Sophocleous M. A., 2004. Global and regional water availability and demand: Prospects for the future. Nat. Resources Res. 13, 61-75.
  • Storey R. G., Williams D. D., Fulthorpe R. R., 2004. Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry 69, 285-313.
  • Supriyasilp T., Graettinger A. J., Durrans S. R., 2003. Quantitatively directed sampling for main channel and hyporheic zone water-quality modeling. Adv. Water Resources 26, 1029-1037.
  • Treonis A. M., Wall D. H., Ross A. W., 1999. Invertebrate biodiversity in antarctic dry valley soils and sediments. Ecosystems 2, 482-492.
  • Triska F. J., Kennedy V. C., Avanzino R. J., Zellweger G. W., Bencala K. E., 1989. Retention and transport of nutrients in a third order stream: hyporheic processes. Ecology 70, 1877-1892.
  • Vallet H. M., Fisher S. G., Stanley E. H., 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. J. North Am. Benthol. Soc. 9, 201-215.
  • Van Der Hoven S., J., Solomon D. K., Moline G. R., 2005. Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport. Appl. Geochem. 20, 861-873.
  • Vollmer S., De Los Santos Ramos F., Daebel H., Kühn G., 2002. Micro scale exchange processes between surface and subsurface water. J. Hydrol. 269, 3-10.
  • White D. S., 1993. Perspectives on defining and delineating hyporheic zones. J. North Am. Benthol. Soc. 12, 61-69.
  • Williams D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthopods. [w]: The Ecology of Aqatic Insects. Rosenberg D. M., Resh V. H. (red.). Praeger Publishers, New York, 430-455.
  • Williams D. D., 2003. The brackishwater hyporheic zone: invertebrate community structure across a novel ecotone. Hydrobiologia 510, 153-173.
  • Williams D. D., Hynes H. B. N., 1974. The occurrence of benthos deep in the substratum. Freshwater Biol. 4, 233-256.
  • Winter T. C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. J. Hydrol. 7, 28-45.
  • Winter T. C. 2002. Subaqueous capping and natural recovery: Understanding the hydrogeologic setting at contaminated sites. Doer Technical Notes Collection (tin Doer - C26), U.S. Army Engineer Research And Development Center, Vicksburg, MS;
  • Zieliński P., Jekatierynczuk-rudczyk E. 2007. Dissolved organic matter transformation in hyporheic zone of small lowland river. Limnol. Hydrobiol. Studies (in Press).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.