Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 56 | 1-2 | 167-174

Article title

Czym pokryte są rośliny? o kutykuli i warstwie wosków epikutykularnych

Content

Title variants

EN
What are plants coated with? About the cuticle and the epicuticular wax layer

Languages of publication

PL EN

Abstracts

EN
The epidermis constitutes the leaf surface. The most characteristic trait of epidermal cells is the fact that they have the cuticle on the outer periclinal wall. The cuticle coats nearly continuously all mature parts of the leaf, and the only breaks or gaps are stomata - the pores between guard cells. The cuticular layer, outside the cell wall, consists of lipid substances (such as waxes, cutin and cutan) and polysaccharides (cellulose and pectins). The cuticular layer is coated with the cuticle proper which lacks polysaccharides and contains more waxes than the underlying layers. On top, there is the epicuticular wax layer, without cutin or cutan. The cuticle proper is covered by a smooth amorphous wax film. Outside the wax film we can find waxes in more ordered form. They form a layer with considerable ultrastructural and chemical diversity. Epicuticular waxes are composed of a mixture of chemical compounds: hydrocarbons, primary alcohols, aldehydes, fatty acids, esters, β-diketons, terpenoids and phenolics. There is a correlation between their ultrastructure and chemistry. Plant surfaces are generally not smooth but exhibit considerably different microstructures. Wax structures may be developed as continuous layers, crusts or crystalloids. The crystalloids are of a characteristic shape and size and may appear in particular arrangements or combinations. Many of them are of systemic significance. The plant cuticle and waxes have many important functions. They reduce the loss of water, reflect or attenuate radiation, form the basis of phyllosphere, protect plant tissues against penetration by fungi, bacteria and insects, as well as from mechanical damage (by wind, rain, soil particles etc.), reduce water retention on the plant surface, and provide a self-cleaning surface.

Keywords

Journal

Year

Volume

56

Issue

1-2

Pages

167-174

Physical description

Dates

published
2007

Contributors

  • Instytut Dendrologii PAN, Parkowa 5, 62-035 Kórnik, Polska

References

  • Baker E. A., Hunt G. M., 1986. Erosion of waxes from leaf surfaces by simulated rain. New Phytol. 102, 161-173.
  • Barthlott W., Neinhuis C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1-8.
  • Barthlott W., Wollenweber E., 1981. Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. Trop. Subtrop. Pflanzenwelt 32, 7-67.
  • Barthlott W., Neinhuis C., Cutler D., Ditsch F., Meusel I., Theisen I., Wilhelmi H., 1998. Classification and terminology of plant epicuticular waxes. Bot. J. Linn. Soc. 126, 237-260.
  • Barthlott W., Theisen I., Borsch Th., Neinhuis C., 2003. Epicuticular waxes and vascular plant systematics: integrating micromorphological and chemical data. [W:] Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics. Stuessy T. F., Mayer V., Hörandl E. (red.), A.R.G. Gantner Verlag, Rugell, 189-206
  • Bergel H., Barthlott W., Koch K., Schreiber L., Neinhuis C., 2004. Plant cuticles: multifunctional interfaces between plant and environment. [W:] The Evolution of Plant Physiology. Hemsley A. R., Poole I. (red.). Elsevier, London, 171-194.
  • Bianchi G., 1995. Plant waxes. [W:] Waxes: Chemistry, Molecular Biology and Functions. Hamilton R. J. (red.). The Oily Press, Dundee, 175-222.
  • Boom A., Sinninge Damsté J. S., Leeuw J. W. de, 2005. Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Org. Geochem. 36, 595-601.
  • Deshmukh A. P., Simpson A. J., Hadad Ch. M., Hatcher P. G., 2005. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org. Geochem. 36, 1072-1085.
  • Dickinson C. H., 1976. Fungi on the aerial surfaces of higher plants. [W:] Microbiology of Aerial Plant Surfaces. Dickinson C. H., Preece T. F. (red.). Academic Press, London-New York-San Francisco, 293-324.
  • Eigenbrode S. D., 1996. Plant surface waxes and insect behaviour. [W:] Plant Cuticles. An integrated Functional Approach. Kerstiens G. (red.). BIOS Scientific Publishers, Oxford, 201-221.
  • Eigenbrode S. D., 2004. The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod. Struct. Dev. 33, 91-102.
  • Eigenbrode S. D., Jetter R., 2002. Attachment to Plant Surface Waxes by an Insect Predator. Integr. Comp. Biol. 42, 1091-1099.
  • Ensikat H. J., Neinhuis C., Barthlott W., 2000. Direct access to plant epicuticular wax crystals by a new mechanical isolation method. Int. J. Pl. Sci. 161, 143-148.
  • Farmer A. M., 1993. The effects of dust on vegetation - a review. Environ. Pollut. 79, 63-75.
  • Federle W., Maschwitz U., Fiala B., Riederer M., Hölldobler B., 1997. Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112, 217-224.
  • Gniwotta F., Vogg G., Gartmann V., Carver T. L. W., Riederer M., Jetter R., 2005. What Do Microbes Encounter at the Plant Surface? Chemical Composition of Pea Leaf Cuticular Waxes. Pl. Physiol 139, 519-530.
  • Gorb E. V., Gorb S. N., 2002. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol. Exp. Appl. 105, 13-28.
  • Gordon D. C., Percy K. E., 1999. Effect of UV-B dose on biosynthesis of epicuticular waxes in Blue spruce (Picea pungens Engelmann) primary needles: preliminary investigation. Water Air Soil Poll. 116, 429-436.
  • Gülz P. G., Boor G., 1992. Seasonal Variations in Epicuticular Wax Ultrastructures of Quercus robur Leaves. Z. Naturf. 47c, 807-814.
  • Gülz P. G., Müller E., 1992. Seasonal Variation in the Composition of Epicuticular Waxes of Quercus robur Leaves. Z. Naturf. 47c, 800-806.
  • Haas K., Brune T., Rücker E., 2001. Epicuticular Wax Crystalloids in Rice and Sugar Cane Leaves are Reinforced by Polymeric Aldehydes. J. App. Bot. 75, 178-187.
  • Hejnowicz Z., 2002. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. Wydawnictwo Naukowe PWN, Warszawa.
  • Holloway P. J., 1982a. Structure and histochemistry of plant cuticular membranes: an overview. [W:] The Plant Cuticle. Cutler D. F., Alvin K. L., Price C. E. (red.). Academic Press, New York, 1-32.
  • Holloway P. J., 1982b. The chemical constitution of plant cutins. [W:] The Plant Cuticle. Cutler D. F., Alvin K. L., Price C. E. (red.). Academic Press, New York, 45-86.
  • Holmes M. G., Keiller D. R., 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands a comparison of a range of species. Pl. Cell Environ. 25, 85-93.
  • Hull H. M., Morton H. L., Wharrie J. R., 1975. Environmental influences on cuticle development and resultant foliar penetration. Bot. Rev. 41, 421-452.
  • Jeffree C. E., 1996. Structure and ontogeny of plant cuticles. [W:] Plant Cuticles. An Integrated Functional Approach. Kerstiens G. (red.). BIOS Scientific Publishers, Oxford, 33-82.
  • Jeffree C. E., Baker E. A., Holloway P. J., 1975. Ultrastructure and recrystallization of plant epicuticular waxes. New Phytol. 75, 539-549.
  • Jeffree C. E., Baker E. A., Holloway P. J., 1976. Origins of the fine structure of plant epicuticular waxes. [W:] Microbiology of Aerial Plant Surfaces. Dickinson C. H., Preece T. F. (red.). Academic Press, London-New York-San Francisco, 119-158.
  • Jetter R., Schäffer S., 2001. Chemical Composition of the Prunus laurocerasus Leaf Surface. Dynamic Changes of the Epicuticular Wax Film during Leaf Development. Pl. Physiol. 126, 1725-1737.
  • Jetter R., Schäffer S., Riederer M., 2000. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Pl. Cell Environ. 23, 619-628.
  • Juniper B. E., 1995. Waxes on plant surfaces and their interactions with insects. [W:] Waxes: Chemistry, Molecular Biology and Functions. Hamilton R. J. (red.). The Oily Press, Dundee, 157-174.
  • Kerstiens G., 1996. Signalling across the divide: a wider perspective of cuticular structure-function relationships. Trends Plant Sci. 1, 125-129.
  • Koch K., Neinhuis C., Ensikat H. J., Barthlott W., 2004. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J. Exp. Bot. 55, 711-718.
  • Koch K., Barthlott W., Koch S., Hommes A., Wandelt K., Mamdouh W., De-Feyter S., Broekmann P., 2006a. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturstar' L.): from the molecular level to three dimensional crystals. Planta 223, 258-270.
  • Koch K., Hartmann K. D., Schreiber L., Barthlott W., Neinhuis C., 2006b. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environm. Exp. Bot. 56, 1-9.
  • Kunst L., Samuels A. L., 2003. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51-80.
  • Kurczyńska E. U., 2002. Epiderma wielokrotna łodyg wierzby - szczególny przypadek powtarzania fenotypu epidermalnego. Wydawnictwo Uniwersytetu Śląskiego, Katowice.
  • Martin J. T., Juniper B. E., 1970. The Cuticles of Plants. Edward Arnold, Edinburgh.
  • Meusel I., Neinhuis C., Markstädter C., Barthlott W., 1999. Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Canad. J. Bot. 77, 706-720.
  • Meusel I., Barthlott W., Kutzke H., Barbier B., 2000a. Crystallographic studies of plant waxes. Powder Diffr. 15, 123-129.
  • Meusel I., Neinhuis C., Markstädter C., Barthlott W., 2000b. Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules. Pl. Biol. 2, 462-470.
  • Müller C., Hilker M., 2001. Host finding and oviposition behavior in a chrysomelid specialist - the importance of host plant surface waxes. J. Chem. Ecol. 27, 985-994.
  • Müller C., Riederer M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31, 2621-2651.
  • Neinhuis C., Koch K., Barthlott W., 2001. Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213, 427-434.
  • Oliveira A. F. M., Meirelles S. T., Salatino A., 2003. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. Anais Acad. Brasil. Ci. 75, 431-439.
  • Pal A., Kulshreshtha K., Ahmad K. J., Behl H. M., 2002. Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora 197, 47-55.
  • Pilon J., Lambers H., Baas W., Tosserams M., Rozema J., Atkin O. K., 1999. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation. Phytochemistry 50, 571-580.
  • Rentschler I., 1982. Eine Methode zur Trennung abgelagerter und eingebauter Stoffe bei Pflanzenblättern. Naturwissenschaften 69, 240.
  • Riedel M., Eichner A., Jetter R., 2003. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218, 87-97.
  • Riederer M., Schreiber L., 1995. Waxes - the transport barriers of plant cuticles. [W:] Waxes: Chemistry, Molecular Biology and Functions. Hamilton R. J. (red.). The Oily Press, Dundee, 131-156
  • Riederer M., Schreiber L., 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023-2032.
  • Stammitti L., Derridj S., Garrec J. P., 1996. Leaf epicuticular lipids of Prunus laurocerasus: importance of extraction methods. Phytochemistry 43, 45-48.
  • Turunen M., Huttunen S., 1990. A review of the response of epicuticular wax of conifer needles to air pollution. J. Environm. Qual. 19, 35-45.
  • Vanhatalo M., Huttunen S., Bäck J., 2001. Effects of elevated [CO2] and O3 on stomatal and surface wax characteristics in leaves of pubescent birch grown under field conditions. Trees 15, 304-313.
  • Vogg G., Fischer S., Leide J., Emmanuel E., Jetter R., Levy A. A., Riederer M., 2004. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J. Exp. Bot.55, 1401-1410.
  • Wagner P., Fürstner R., Barthlott W., Neinhuis C., 2003. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exp. Bot.54, 1295-1303.
  • Wettstein-Knowles P. von, 1995. Biosynthesis and genetics of waxes. [W:] Waxes: Chemistry, Molecular Biology and Functions. Hamilton R. J. (red.). The Oily Press, Dundee, 91-130.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv56p167kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.