Preferences help
enabled [disable] Abstract
Number of results
2007 | 56 | 1-2 | 155-166
Article title

Cyjanogeneza u roślin i jej efektywność w ochronie roślin przed atakiem roślinożerców i patogenów

Title variants
Cyanogenesis in plants and its role in herbivore defense
Languages of publication
Cyanogenesis is the process by which hydrogen cyanide is released from endogenous cyanide containing compounds, mainly cyanogenic glycosides. Cyanogenic glycosides are phytoanticipins known to be present in more than 2600 species. They are considered to have an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide as the result of tissue disruption. However, some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquires the ability to metabolize cyanogenic glycosides or to sequester them for use against their own predator defense. Indeed, in some cases, the produced plant cyanide actually acts as a phagostimulant rather than an inhibitor. This has led to a certain degree of scepticism regarding the role of cyanogenic glycosides as defense compounds. In this review the author argues that the effectiveness of cyanogenesis in deterring herbivores depends not only on morphology, physiology, and behavior of the herbivores, but also on the concentration of cyanogenic glycosides in the host plant, and the amount of toxic hydrogen cyanide, which can be released per unit time. Many plants used for human nutrition contain cyanogenic glycosides (e.g. cassava, sorghum, lima bean), so cyanide poisoning by such a food is an important problem, especially in some regions of the world. The last part of this review describes briefly the human ability to detoxify cyanide, and processing methods leading to remove cyanogens during food preparation. The consequences for human nutrition and for plant-herbivore interaction of established transgenic cyanogen-free plants or plants with induced accelerated cyanogenesis are also discussed.
Physical description
  • Zakład Fizjologii Roślin, Instytut Biologii, Uniwersytet w Białymstoku, Świerkowa 20b, 15-950 Białystok, Polska
  • Alonso-Amelot M. E., Oliveros-bastidas A., 2005. Kinetics of the natural evolution of hydrogen cyanide in plants in neotropical Pteridium arachnoideum and its ecological significance. J. Chem. Ecol. 31, 315-331.
  • Alonso-Amelot M. E., Nunez J. L. A., Duarte L., Oliveros-bastidas A., 2006. Hydrogen cyanide release during feeding of generalist and specialist lepidopteran larvae on a cyanogenic plant, Passiflora capsularis. Physiol. Entomol. 31, 307-315.
  • Ballhorn D. J., Lieberei R., Ganzhorn J. U., 2005. Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data. J. Chem. Ecol. 31, 1445-1473.
  • Ballhorn D. J., Heil M., Lieberei R., 2006. Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus - activity and activation of β-glucosidase. J. Chem. Ecol. 32, 261-275.
  • Beesley S. G., Compton S. G., Jones D. A., 1985. Rhodanese in insects. J. Chem. Ecol. 11, 45-50.
  • Bogatek R., Gawrońska H., Oracz K., 2003. Involvement of oxidative stress and Aba in Cn-mediated elimination of embryonic dormancy in apple. [w:] The Biology of Seeds. Nicolas G., Bradford K. J., Come D., Pritchard H. W. (red.). Recent Research Adv. 211-216.
  • Brunt C., Read J., Sanson G. D., 2006. Changes in resource concentration and defence during leaf development in a tough-leaved (Nothofagus moorei) and soft-leaved (Toona ciliata) species. Oecologia 148, 583-592.
  • Busk P. K., Moller B. L., 2002. Dhurin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129,1222-1231.
  • Cardoso A. P., Mirione E., Ernesto M., Massaza F., Cliff J., Haque M. R., Bradbury J. H., 2005. Processing of cassava roots to remove cyanogens. J. Food Comp. Anal. 18, 451-460.
  • Clegg D. O., Conn E. E., Janzen D. H., 1979. Developmental fate of the cyanogenic glucoside linamarin in Costa Rica wild Lima bean seeds. Nature 278, 343-344.
  • Cork S. J., 1996. Optimal digestive strategies for arboretal herbivorous mammals in contrasting forest types: Why Koalas and Colobines are different. Aust. J. Ecol. 21, 10-20.
  • Dziewanowska K., Niedźwiedź I., Chodelska I., Lewak S, 1979. Hydrogen cyanide and cyanogenic compounds in seeds. I. Influence of Hydrogen Cyanide On Germination of Apple Embryos. Physiol. Veg. 17, 279-303.
  • Engler H. S., Spencer K. C., Gilbert L. E., 2000. Insect metabolism: Preventing cyanide release from leaves. Nature 406, 144-145.
  • Fengrui L., 1998. Severity of damage to Trifolium repens leaves by certain invertebrate species in mixed perennial ryegrass/white clover swards: response to cultivar, cutting frequency and sward characteristics. Grass And Forage Sci. 54, 137-143.
  • Franks T. M., Powell K. S., Choimes S., Marsch E., Iocco P., Sinclair C. M., Van Heeswijck R., 2006. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res. 15, 181-195.
  • Frehner M., Scalet M., Conn E. E., 1990. Pattern of the cyanide-potential in developing fruits. Plant Physiol. 94, 28-34.
  • Glander K. E., Wright P. C., Seigler D. S., Randrianasol B., 1989. Consumption of cyanogenic bamboo by a newly discovered species of bambo lemur. Am. J. Primatol. 19, 119-124.
  • Gleadow R. M., Woodrow I. A., 2002. Constrains on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 28, 1301-1313.
  • Haskins F. A., Gorz H. J., Johnson B. E., 1987. Seasonal variation in leaf hydrocyanic acid potential of low- and high-dhurrin sorghums. Crop Sci. 27, 903-906.
  • Hatzfeld Y., Saito K., 2000. Evidence for existence of rhodanese (thiosulfate:cyanide sulfurtransferase) in plants: preliminary chracterisation of two rhodanese cDNAs from Arabidopsis thaliana. Febs Lett. 470, 147-150.
  • Hruska A. J., 1988. Cyanogenic glucosides as defense compounds. A Review For Evidence. J. Chem. Ecol. 14, 2213-2217.
  • Hucklesby D. P., Dowling M. J., Hewitt E. J., 1982. Cyanide formation from glyoxylate and hydroxyloamine catalyzed by extracts of higher plant leaves. Planta 156, 487-491.
  • Hughes M. A., 1991. The cyanogenic polymorphism in Trifolium repens L. (white Clover). Heredity 66, 105-115.
  • Jones, D. A. 1998. Why are so many food plants cyanogenic? phytochemistry 47, 155-162.
  • Kojima M., Poulton J. E., Thayer S. S., Conn E. E., 1979.tissue Distribution Of Dhurrin And Of Enzymes Involved In Its Metabolism In Leaves Of Sorghum Bicolor. Plant Physiol. 63, 1022-1028.
  • Lieberei R., Biehl B., Giesemann A., Junqueira N. T. V., 1989. Cyanogenesis inhibits active defense reactions in plants. Plant Physiol. 90, 33-36.
  • Lechtenberg M., Nahrstedt A., 1999. Cyanogenic glycosides. [w:] Naturally Occuring Glycosides. Ikan R. (red.). Wiley & Sons J., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 147-191.
  • Nahrstedt A., 1985. Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol. 150, 35-47.
  • Nahrstedt A., 1993. Cyanogenesis and foodplants. Proc. Phytoch. Soc. Eur. 34, 107-129.
  • Niedźwiedź-Siegień I., 1998. Cyanogenic glucosides in Linum usitatissimum. Phytochemistry 49, 59-63.
  • Niedźwiedź-Siegień I., Gierasimiuk A., 2001. Environmental Factors Affecting The Cyanogenic Potential Of Flax Seedlings. Acta Physiol. Plant. 23, 383-380.
  • Nielsen K. A., Hrmova M., Nielsen J. N., Forslund K., Ebert S., Olsen C. E., Fincher S., Moller B. L., 2006. Reconstitution of cyanogenesis in barley (Hordeum vulgare L. ) And Its Implications For Resistance Against the Barley Powdery Mildew Fungus. Planta 223, 1010-1023.
  • Osbourn A. E., 1996. Preformed antimicrobial compounds and plant defense against fungal attack. the Plant Cell 8, 1821-1831.
  • Pandey R. M., Kush A. K., Misra D. P., 1981. Hydrocyanic acid content, a biochemical marker for reactions to powdery mildew in linseed. Curr. Sci. 50, 902-904.
  • Panigraki S., Rickard J., O'Brien G. M., Gay G., 1992. Effects of different rates of drying cassava root on its toxicity to broiler chicks. British Poll. Sci. 33, 1025-1041.
  • Provenza F. D., Pfister J. A., Cheney C. D., 1992. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores. J. Range Manag. 45, 36-45.
  • Puonti-Kaerlas J., 1998. Cassava biotechnology. Biotechnol. Genetic Enginner. Rev. 15, 329-364.
  • Saucy F., Studer J., Aerni V., Schneiter B., 1999. Preference For Acyanogenic White Clover (trifolium Repens) In The Vole Arvicola Terrestris. I. Experiments With Two Varieties. J. Chem. Ecol. 25, 1441-1454.
  • Schappert P. J., Shore J. S., 1999. Effects of cyanogenesis polymorphism in Turnera ulmifolia on Euptoieta hegestia and potential Anolis predators. J. Chem. Ecol. 25, 1455-1479.
  • Seigler D. S., 1998. Cyanogenic Glycosides And Cyanolipids . [w:] Plant Secondary Metabolism. Seigler D. S. (red.). Kluwer Academic Press, Boston, 273-296.
  • Siebert M., Sommer S., Li S., Wang Z. Severin K., Heide L., 1996. Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate Glucosides As a Result of the Expression of the Bacterial UbiC Gene in Tobacco. Plant Physiol. 112, 811-819.
  • Siegień I., 1998. Cyjanogeneza u roślin. Post. Biochem. 44, 325-333.
  • Siegień I., Bogatek R., 2006. Cyanide action in plants - from toxic to regulatory. Acta Physiol. Plant. 28, 483-497.
  • Siritunga D., Sayre R., 2004. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol. Biol. 56, 661-669.
  • Siritunga D., Arias-garzon D., White W., Sayre R. T., 2004. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotechnol. J. 2, 37-43.
  • Stochmal A., Oleszek W., 1997. Changes of cyanogenic glucosides in white clover (Trifolium repens L. ) During the Growing Season. j Agric. Food. Chem. 45, 4333-4336.
  • Stochmal A., 2001. Ekologiczne znaczenie związków cyjanogennych. [w]: Biochemiczne Oddziaływania Środowiskowe. Oleszek W., Głowniak K., Leszczyński B. (red.). Akademia Medyczna, Lublin, 151-167.
  • Swain E., Poulton J. E., 1994. Utilisation of amygdalin during seedling development of Prunus serotina. Plant Physiol. 106, 437-445.
  • Tattersal D. B., Bak S., Jones P. R., Olsen C. E., Nielsen J. K., Hansen M. L., Hoj P. B., Moller B. L., 2001. Resistance to an herbivore through engineered glucoside synthesis. Science 293, 1826-1828.
  • Tuncel G., Nout M., J., R., Brimer L., Goktan D., 1990. Toxicological, nutritional and microbiological evaluation of tempe fermentation with Rhizopus oligosporus of bitter and sweet apricot seeds. Int. J. Food Microbiol. 11, 337-344.
  • Tuncel G., Nout M., J., R., Brimer L., 1995. The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds. Food Chem. 53, 447-451.
  • Vetter J., 2000. Plant cyanogenic glycosides. Toxicon 38, 11-36.
  • Wang P., Sandrock R. W., Vanetten H. D., 1999. Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide but does not affect its pathogenicity on the cyanogenic plant sorghum. Fung. Gen. Biol. 28, 126-134.
  • Webber J. J., Roycroft C. R., Callinan J. D., 1985. Cyanide poisoning of goats from sugar gums (Eucalyptus Cladocalyx). Aust. Vet. J. 62, 28.
  • Woodrow I. E., Slocun D. J., Gleadow R. M., 2002. Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Funct. Plant Biol. 29, 103-110.
  • Yip W.-K., Yang S. F., 1988. Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 88, 473-476.
  • Zagrobelny M., Bak S., Rasmussen V., Jorgensen B., Naumann C. M., 2004. Cyanogenic glycosides and plant-insect interactions. Phytochemistry 65, 293-306.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.