Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 56 | 1-2 | 133-142

Article title

Czy rośliny mogą "zjadać" rośliny czyli o pasożytniczych roślinach nasiennych

Content

Title variants

EN
Can a plant eat another plant ? What is parasitism between angiosperm plants about

Languages of publication

PL EN

Abstracts

EN
Parasitism among angiosperms is not a widespread phenomenon as it occurrs in approximately 1% of known species. Nevertheless, some parasitic weeds have great economic importance - among them are destructive pathogens of commercially valuable crops and pathogens of coniferous trees in many regions of the world. Parasitic angiosperms are a taxonomically, structurally and physiologically differentiated group of plants that rely on a neighboring plant for partial or total supply of water and nutrients. The common feature uniting parasitic angiosperms is the presence of haustorium, a specialized organ that attaches the parasite to its host and allows for extraction of solutes from the host`s vascular system. Parasitic plants are often classified as hemiparasitic or holoparasitic, depending on the extent of their inability to produce their own reduced carbon. Holoparasitic species are obligate parasites and as such lack chlorophyll and have little independent capacity to assimilate carbon and inorganic nutrients. Hemiparasites have chlorophyllus and are autotrophic to some extent. They can be further divided into facultative and obligate parasites, depending on whether or not they are capable of completing their lifecycle in the absence of the host. Parasitic plants have different modes of invading host plants, some develop haustoria on the roots whereas others invade aerial parts of the host. They infect their hosts to rob them of water, minerals and nutrients and compete for resources. The direct effect of infestation is the reduction of host is dry matter production, change of its shoot/root allometry, the decrease in reproductive output and sometimes finally killing of the host. Parasitic genera vary considerably in their habits and host ranges and can indirectly influence their hosts by shifting the competitive balance and resource cycling in ecosystems. This can result in change in ecosystems of relative species composition under future CO2 -rich atmosphere and climate warming, known as the greenhouse effect.

Keywords

Journal

Year

Volume

56

Issue

1-2

Pages

133-142

Physical description

Dates

published
2007

Contributors

  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, SGGW, Nowoursynowska 159, 02-776 Warszawa, Polska

References

  • Acyord R. D., Graves J. D., 1997. The regulation of the water potential gradient in the host and parasite relationship between Sorghum bicolor and Striga hermontica. Ann. Bot. 80, 649-656.
  • Ayres P. G., Press M. C., Spencer-phillips P. T. N., 1996. Effects of pathogens and parasitic plants on source-sink relationships. [W:] Photoassimilate distribution in plants and crops. Zamski E., Schaffer A. A. (red.). Marcel Dekker Inc., 479-500.
  • calladine a., pate J. S., 2000. Haustirial structure and functioning of the root hemiparasitic tree Nuytsia floribunda (Labill.) R.Br. and water relationships with its hosts. Ann. Bot. 85, 723-731.
  • Cameron D. D., Hwangbo J.-k., Keith A. M., Geminez J.-m., Kraushaar D., Rowntree J., Seel W. E., 2005. Interactions between the hemiparasitic angiosperm Rhinanthus minor and its host: from cell to the ecosystem. Folia Geobot. 40, 217-229.
  • Dörr I., 1997. How Striga parasitizes its host: a TEM and SEM study. Ann. Bot. 79, 463-472.
  • Estrabrook E. M., Yoder J. I., 1998. Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116, 1-7.
  • Gajewski W., 1962. Pasożytnicze rośliny kwiatowe. PZWS, Warszawa.
  • Gurney A. L., Slate J., Press M. C., Scholes J. D., 2006. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phyt. 169, 199-208.
  • Haupt S., Oparka K. J., Sauer N., Neumann S., 2001. Macromolecular trafficking between Nicotina tabacum and the holoparasite Cuscuta reflexa. J. Exp. Bot. 52, 173-177.
  • Hawksworth F. G., Wiens D., 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. [W:] Agriculture Handbook 709. Geils B. W., Nisley R. G. (red.). United States Department of Agriculture Forest Service, Washington.
  • Hättenschwiler S., Zumbrunn T., 2006. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO2 enrichment. Oecologia 147, 47-52.
  • Hibberd J. M., Jeschke D. W., 2001. Solute flux into parasitic plants. J. Exp. Bot. 52, 2043-2049.
  • Jeschke D. W., Hilpert A., 1997. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa - Ricinus communis. Plant Cell Envir. 20, 47-56.
  • Jiang F., Jeschke W. D., Hartung W., 2003. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. J. Exp. Bot. 54, 1985-1993.
  • Keyes W. J., O'malley R. C., Kim D., Lynn D. G., 2000. Signaling organogenesis in parasitic angiosperms: xenognosin generation, perception and response. J. Plant Growth Regul. 19, 217-231.
  • Koskela T., Salonen V., Mutikainen P., 2001. Interaction of a host plant and its holoparasite: effects of previous selection by the parasite. J. Evol. Biol. 14, 910-917.
  • Kuijt J., Lye D., 2005. Gross xylem structure of the interface of Psittacanthus ramiflorus (Loranthaceae) with its hosts and with a hyperparasite. Bot. J. Linnean Soc. 147, 197-201.
  • Małuszyńska E., Podyma W., Drzewiecki J., Karnkowski W. 1998. Chwasty i rośliny pasożytnicze objęte przepisami kwarantanny. IHiAR PIOP, Warszawa.
  • Manschadi A. M., Wang E., Robertson M. J. Meinke H. Sauerborn J., 2003. Development of a parasite module in APSIM (Agricultural Production System Stimulator) - Case study: the parasitic weed Orobanche crenata infesting Faba bean. Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy.
  • Marvier M. A., Smith D. I., 1997. Conservation implications of host use for rare parasitic plants. Conserv. Biol. 11, 839-848.
  • Matusova R., Bouwmeester H., 2006. The effect of host-root-derived chemical signals on the germination of parasitic plants. [W:] Chemical ecology: from gene to ecosystem. Dicke M., Takken W. (red.). Springer, 39-54.
  • Mower J. P., Stefanovic S., Young G. J., Palmer J. D., 2004. Plant genetics: gene transfer from parasitic to host plants. Nature 11, 165-166.
  • Nickrent D. L., 2002. Parasitic Plants of the World. [W:] Parasitic plants of the Iberian Peninsula and Balearic Islands. López-sáez J. A., Cataln P., Sáez L. (red.). Mundi-Prensa, Madrid, 7-27.
  • Nickrent D. L., Musselman L. J. 2004. Introduction to parasitic flowering plants. The Plant Health Instructor. DOI: 10.1094/PHI-I-2004-0330-01 http://www.apsnet.org/education/IntroPlantPath/PathogenGroups/Parasiticplants/default.htm#types
  • Pate J. S., 2001. Haustoria in action: case studies of nitrogen acquisition by woody xylem-tapping hemiparasites from their hosts. Protoplasma 215, 1-4.
  • Phoenix G. K., Press M. C., 2005a. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J. Ecol. 93, 67-78.
  • Phoenix G. K., Press M. C., 2005b. Effects of climate change on parasitic plants: the root hemiparasitic Orobanchaceae. Folia Geobot. 40, 205-216.
  • Press M. C., Phoenix G. K., 2005. Impacts of parasitic plants on natural communities. New Phytol. 166, 737-751.
  • Press M. C., Graves J. D., Steward G. R., 1990. Physiology of the interaction of angiosperm parasites and their higher plant hosts. Plant Cell Environ. 13, 91-104.
  • Podbielkowski Z., Podbielkowska M., 1992. Przystosowania roślin do środowiska. Wydawnictwa Szkolne i Pedagogiczne, Warszawa.
  • Reiss G. C., Bailey J. A., 1998. Striga gesnerioides parasiting cowpea: development of infection structures and mechanisms of penetration. Ann. Bot. 81, 431-440.
  • Sauerborn J., 1991. Parasitic flowering plants - ecology and management. Verlag Josef Margrave Scientific Books.
  • Steward G. S., Press M. C., 1990. The physiology and biochemistry of parasitic angiosperms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 127-151.
  • Szafer W., Kulczyński S., Pawłowski B., 1988. Rośliny Polskie. PWN, Warszawa.
  • Vasey R., Scholes J., Press M., 2005. Wheat (Triticum aestivum) is susceptible to the parasitic angiosperm Striga hermonthica, a major cereal pathogen in Africa. Phytopath. 95, 1294-1300.
  • Yoder J., 1997. A species-specific recognition system directs haustorium development in the parasitic plant Triphysaria (Scrophulariaceae). Planta 202, 407-413.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv56p133kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.