Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 1 | 75-82
Article title

Być albo nie być ... małym

Title variants
To be or noT To be.... a small
Languages of publication
Body mass (size) is a very important biological character, interrelated with key life history traits, such as fertility, age at maturity, reproductive success and mortality. On the physiological level, body mass is also closely associated with key components of energy budgets. Yet, factors moulding within-species variation of body mass and its relations to energy expenditures and life history traits are still not fully understood. The weasel (Mustela nivalis Linneaus, 1776) is an extremely interesting species almost perfectly suited to study these relations. It is characterized by a considerable variation in body mass (range 40-150 g) and extremely high metabolic rates. This highly specialised predator hunts on different species of rodents. In the forest weasel preys on the bank vole (Clethionomys glareolus) and yellow-necked mouse (Apodemus flavicollis), whereas in the open habitats it mainly preys on the voles (Microtus spp.). Due to their small body size and high metabolic rates, weasels encounter numerous constraints. The prey size is one of the main ecological factors determining variation in weasel's body mass. Males heavier than 100 g suffer from increased winter mortality. We therefore hypothesise that in summer bigger males are favoured by sexual selection, whereas in winter energy constrains select for smaller animals. To test this we investigated time budgets, resting (RMR) and field metabolic rate (FMR) in weasel males of various sizes during winter and summer. In contrast to other carnivore species the body-mass corrected RMR of weasels was lower in winter than in summer. Weasels also minimised their winter energetic expenditures by decreasing hunting activity (on average 4 h/day in summer vs. less than 2 h/day in winter). Irrespective of body mass this was usually sufficient to catch just a single prey unit. In accordance with our expectations the winter hunting activity was sufficient to balance the energy budget of small males, but compromised survival prospects of bigger individuals.
Physical description
  • Zakład Badania Ssaków Polskiej Akademii Nauk, Gen. Waszkiewicza 1c, 17-230 Białowieża, Polska
  • Zakład Badania Ssaków Polskiej Akademii Nauk, Gen. Waszkiewicza 1c, 17-230 Białowieża, Polska
  • Zakład Badania Ssaków Polskiej Akademii Nauk, Gen. Waszkiewicza 1c, 17-230 Białowieża, Polska
  • Abramov A. V., Baryshnikov G. F., 2000. Geographic variation and intraspecific taxonomy of weasels Mustela nivalis (Carnivora, Mustelidae). Zoosyst. Rossica 8, 365-402.
  • Berteaux D., Thomas D. W., Bergeron J. M., Lapierre H., 1996. Repeatability of daily field metabolic rate in female meadow voles (Microtus pennsylvanicus). Funct. Ecol. 10, 751-759.
  • Brown J. H., Lasiewski R. C., 1972. Metabolism of weasel: the cost of being long and thin. Ecology 53, 939-943.
  • Casey T. M., Casey K. K., 1979. Thermoregulation of arctic weasels. Physiol. Zool. 52, 23-50.
  • Clutton-brock T. H., Guinness F. E., Albon S. D., 1983. The costs of reproductions to red deer hinds. J. Anim. Ecol. 52, 367-383.
  • Corp N., Gorman M. L., Speakman J. R., 1997. Ranging behaviour and time budgets of male wood mice Apodemus sylvaticus in different habitats and seasons. Oecologia 109, 242-250.
  • Dohm M. R., 2002. Repeatability estimates do not always set an upper limit to heritability. Funct. Ecol. 16, 273-280.
  • Erlinge S. 1987. Why do European stoats Mustela erminea not follow Bergman's rule? Holoarct. Ecol. 10, 3-39.
  • Gould S. J. 1998. Dzieje życia na ziemi. Świat Książki, Warszawa.
  • Hansen T. F., Boonstra R. 2000. The best in all possible worlds? A quantitative genetic study of geographic variation in the meadow vole, Microtus pennsylvanicus. Oikos 89, 81-94.
  • Harvey P. H., Pagel M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.
  • Jędrzejewska B., Jędrzejewski W., 1989. Seasonal surplus killing as hunting strategy of the weasel Mustela nivalis - test of a hypothesis. Acta Theriol. 34, 347-359.
  • Jędrzejewska B., Jędrzejewski W., 2001. Ekologia zwierząt drapieżnych w Puszczy Białowieskiej. PWN, Warszawa.
  • Jędrzejewski W., Jędrzejewska B., Mcneish E., 1992. Hunting success of the weasel Mustela nivalis and escape tactics of forest rodents in Białowieża National Park. Acta Theriol. 37, 319-328.
  • Jędrzejewski W., Jędrzejewska B., Zub K., Nowakowski W., 2000. Activity patterns of radio-tracked weasels Mustela nivalis in Białowieża National Park (E Poland). Ann. Zool. Fennici 37, 161-168.
  • King C., 1989. The natural history of weasels and stoats. Christopher Helm, London.
  • King C., 1991. Body size - prey size relationships in European stoats Mustela erminea: a test case. Holarct. Ecol. 14, 173-185.
  • Korpimäki E, Norrdahl K., 1989. Avian predation on mustelids in Europe. 1. Occurrence and effects on body size variation and life traits. Oikos 55, 205-215.
  • Koteja P., 1996. The usefulness of a new TOBEC instrument (ACAN) for investigating body composition in small mammals. Acta Theriol. 41, 107-112.
  • Kozłowski J., Konarzewski M., Gawełczyk A. T., 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. PNAS 100, 14080-14085.
  • McDonald R.A., 2002. Resource partitioning among British and Irish mustelids. J. Anim. Ecol. 71, 185-200.
  • McNab B. K., 1989. Basal rates of metabolism, body size, and food habits in the order Carnivora. [W:] Carnivore behaviour, ecology, and evolution. Gittleman J. L. (red.). Cornell University Press, Ithaca, N.Y., 335-354.
  • McNab B. K., 2002. The physiological ecology of vertebrates. A view from energetics. Cornell University Press, Ithaca.
  • Powell R. A., King C.M., 1997. Variation in body size, sexual dimorphism age-specific survival in stoats Mustela erminea (Mammalia: Carnivora), with fluctuating food supplies. Biol. J. Linn. Soc. 62, 165-194.
  • Ralls K., Harvey P. H., 1985. Geographic variation in size and sexual dimorphism of North American weasels. Biol. J. Linn. Soc. 25, 119-167.
  • Ritland K., 2000. Marker-inferred relatedness as a tool detecting heritability in nature. Mol. Ecol. 9, 1195-1204.
  • Roff D. A., 2002. Life history evolution. Sinauer Associates, Inc., Sunderland, MA.
  • Sadowska E. T., Labocha M. K., Baliga K., Stanisz A., Wróblewska A. K., Jagusiak W., Koteja P., 2004. Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution 59, 672-681.
  • Schekkerman H., Tulp I., Piersma Th., Viser G. H., 2003. Mechanism promoting higher growth rate in arctic than in temperature shorebirds. Oecologia 134, 332-342.
  • Schoenemann P. T., 2004. Brain size scaling and body composition in mammals. Brain Behav. Evol. 63, 47-60.
  • Schmidt-Nielsen K., 1992. Fizjologia zwierząt: adaptacja do środowiska. Wydawnictwo Naukowe PWN, Warszawa.
  • Speakman J. R., 1997. Doubly labelled water. Theory and Practice. Chapman & Hall, London.
  • Speakman J. R., Racey P. A., Haim A., Webb P. I., Ellison G. T. H., Skinner J. D., 1994. Inter- and intraindividual variation in daily energy expenditure of the pouched mouse (Saccostomus campestris). Funct. Ecol. 8, 336-342.
  • Stearns S. C., 1992. The evolution of life histories. Oxford Univ. Press, Oxford.
  • Van Zyll De Jong C. G., 1992. A morphometric analysis of cranial variation in Holoarctic weasels (Mustela nivalis). Z. Säugetierk. 57, 77-93.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.