PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2006 | 55 | 4 | 347-353
Article title

Cykliczność wielkich wymierań — komputerowe modelowanie ewolucji ekosystemu

Content
Title variants
EN
Periodicity of mass extinctions — computer modelling of the evolution of ecosystem
Languages of publication
PL EN
Abstracts
EN
Twenty years ago, after analysing palaeontological data, raup and sepkoski suggested that mass extinctions on earth appear cyclically with a period of approximately 26 million years (my). to explain the 26my period, a number of proposals have been made involving, e.g., astronomical effects, increased volcanic activity, or the earth’s magnetic field reversal, none of which, however, has been confirmed. here we describe computer simulations of a spatially extended discrete model of an ecosystem and show that the periodicity of mass extinctions might be a natural feature of the ecosystem’s dynamics and not the result of periodic external perturbations. in our model, periodic changes of the diversity of an ecosystem and some of its other characteristics are induced by the coevolution of species. in agreement with some palaeontological data, our results show that the longevity of a species depends on the evolutionary stage at which the species was created. possible further tests of our model are also discussed.
Keywords
Journal
Year
Volume
55
Issue
4
Pages
347-353
Physical description
Dates
published
2006
Contributors
author
  • Instytut Fizyki, Uniwersytet im. Adama Mickiewicza, Umultowska 85, 61-614 Poznań, Polska
  • Instytut Językoznawstwa, Uniwersytet im. Adama Mickiewicza, Międzychodzka 3/5, 61-371 Poznań, Polska
References
  • Alroy J., 1998. Cope’s Rule And The Dynamics Of Body Mass Evolution In North American Fossil Mammals. Science 280, 731-734.
  • Becker L., Poreda R. J., Basu A. R., Pope K. O., Harrison T. M., Nicholson C., Iasky R., 2004. Bedout: A Possible End-permian Impact Crater Offshore Of Northwestern Australia. Science 304 1469-1476.
  • Caldarelli G., Higgs P. G., Mckane A. J., 1998. Modelling Coevolution In Multispecies Communities. J. Theor. Biol. 193, 345-358.
  • Chowdhury D., Stauffer D., Kunwar A., 2003. Unification Of Small And Large Time Scales For Biological Evolution: Deviations From Power Law. Phys. Rev. Lett. 90, 068101-068105.
  • Cope E. D., 1887. The Origin Of The Fittest. Appleton, New York. Coppex F., Droz M., Lipowski A., 2004. Extinction Dynamics Of Lotka-volterra Ecosystems On Evolving Networks. Phys. Rev. E 69, 061901-061907.
  • Davis M., Hut P., Muller R. M., 1984. Extinction Of Species By Periodic Comet Showers. Nature 308, 715-717.
  • Dieckmann U., Marrow P., Law R., 1995. Evolutionary Cycling In Predator-prey Interactions: Population Dynamics And The Red Queen. J. Theor. Biol. 176, 91-102.
  • Gingerich P. D., 1983. Rates Of Evolution: Effects Of Time And Temporal Scaling. Science 222, 159- 161.
  • Jablonski D., Roy K., Valentine J. W., 2003. Evolutionary Macroecology And The Fossil Record. [w:] Macroecology: Concepts And Consequences. Blackburn T. M., Gaston K. J. (red.). Oxford: Blackwell Science, 368-390.
  • Keller G., Adatte T., Stinnesbeck W., Rebolledovieyra M., Fucugauchi J. U., Kramar U., Stuben D., 2004. Chicxulub Impact Predates The K-t Boundary Mass Extinction. Proc. Natl. Acad. Sci. Usa 101, 3753-3758.
  • Lipowski A., 1999. Oscillatory Behaviour In A Lattice Prey-predator System. Phys. Rev. E 60, 5179-5184.
  • Lipowski A., 2005. Periodicity Of Mass Extinctions Without An Extraterrestrial Cause. Phys. Rev. E 71, 052902-052905.
  • Lipowski A., Lipowska D., 2000. Nonequilibrium Phase Transition In A Prey-predator System. Physica A 276, 456-464.
  • Lipowski A., Lipowska D., 2006. Long-term Evolution Of An Ecosystem With Spontaneous Periodicity Of Mass Extinctions. Theory Biosci. 125, 67-77.
  • Miller A. I., Foote M., 2003. Increased Longevities Of Post-paleozoic Marine Genera After Mass Extinctions. Science 302, 1030-1032.
  • Murray J. D., 1989. Mathematical Biology. Springer, Berlin. Newman M. E. J., Palmer R. G., 2003. Modelling Extinction. Oxford University Press, New York.
  • Prokoph A., Fowler A. D., Patterson R. T., 2000. Evidence For Periodicity And Nonlinearity In A High-resolution Fossil Record Of Long-term Evolution. Geology 28, 867-870.
  • Rampino M. R., Stothers R. B., 1984. Terrestrial Mass Extinctions, Cometary Impacts And The Sun’s Motion Perpendicular To The Galactic Plane. Nature 308, 709-712.
  • Raup D. M., Sepkoski J. J., 1984. Periodicities Of Extinctions In The Geologic Past. Proc. Natl. Acad. Sci. Usa 81, 801-805.
  • Raup D. M., Stanley S. M., 1984. Podstawy Paleontologii. Pwn, Warszawa. Rohde R. A., Muller R. A., 2005. Cycles In Fossil Diversity. Nature 434, 208-210.
  • Simpson G. G., 1999. Kopalny Zapis Historii życia Prószyński I S-ka, Warszawa. Stanley S. M, 1973. An Explanation For Cope’s Rule. Evolution 27, 1-26.
  • Stothers R. B., 1986. Periodicity Of The Earth’s Magnetic Reversals. Nature 322, 444-446.
  • Stothers R. B., 1993. Flood Basalts And Extinction Events. Geophys. Res. Lett. 20, 1399-1402.
  • Van Valkenburgh B., Wang X., Damuth J., 2004. Cope’s Rule, Hypercarnivory, And Extinction In North American Canids. Science 306, 101-104.
  • Ward P. D., Botha J., Buick R., De Kock M. O, Erwin D. H., Garrison G. H., Kirschvink J. L., Smith L., 2005. Abrupt And Gradual Extinction Among Latepermian Land Vertebrates In The Karoo Basin, South Africa. Science 307, 70-715.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv55p347kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.