Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 4 | 337-345
Article title

Elementy radiobiologii dla pilota Pirxa

Title variants
Elements of radiobiology for pilot Pirx
Languages of publication
Contrary to the widespread opinion, interstellar space is not empty but filled with high energy particles that originate from within and from outside of our Solar system. these particles can induce ionization lesions in human cells and present a health hazard for astronauts. dna is the most sensitive component of the cell and induction of dna damage by ionizing radiation triggers a cascade of signals which can either push the cell towards committing suicide by apoptosis or initiate repair processes. a number of repair pathways exist but none of them is error-free. repair mistakes can lead to the formation of mutations which are potential sources of cancer. the actual doses received by the astronauts in space is a matter of debate. a number of studies have been performed to assess the dose by means of biological dosimetry. this method relies on the analysis of chromosomal aberrations in peripheral blood lymphocytes. most studies show an increased frequency of aberrations in lymphocytes of astronauts who spent at least several weeks in space. this clearly shows that space travel is associated with a risk of developing cancer.
Physical description
  • Badhwar G. D., 1997. The Radiation Environment In Low-earth Orbit. Radiation Res. 148s, S3-S10.
  • Bartosz G., 2003. Druga Twarz Tlenu. Państwowe Wydawnictwo Naukowe, Warszawa. Bridges B. A., 1999. Rola Uszkodzeń Dna Przy Powstawaniu Mutacji Fazy Stacjonarnej (adaptacyjnej). Kosmos 48, 293-303.
  • Christmann M., Tomicic M. T., Roos W. P., Kaina B., 2003. Mechanisms Of Human Dna Repair: An Update. Toxicology 193, 3-34.
  • Domiński A., 1999. Apoptoza: śmierć Komórek W życiu Organizmów Zwierzęcych. Kosmos 48, 385396.
  • Edwards A. A., 2001. Rbe Of Radiations In Space And The Implications For Space Travel. Physica Medica 17 (suppl. 1), 5-10.
  • George K., Durante M., Wu H., Willingham V., Badhwar G., Cucinotta F. A., 2001. Chromosome Aberrations In The Blood Lymphocytes Of Astronauts After Space Flight. Radiation Res. 156, 731738.
  • Goodhead D. T., 1999. Mechanisms For The Biological Effectiveness Of High-let Radiations. J. Radiat. Res. 40, 1-13.
  • Grądzka I., 2000. Apoptoza: Decyzja Należy Do Mitochondrium. Postępy Biochemii 46, 2-16.
  • Hall E. J., 2000. Radiobiology For The Radiologist. Wydanie V. Lippincott ,williams & Wilkins Publishers, Philadelphia, Baltimore, New York.
  • Hammond T. G., Lewis F. C., Goodwin T. J., Linnehan R. M., Wolf D. A., Hire K. P., Campbell W. C., Benes E., O’reilly K. C., Globus R. K., Kaysen J. H., 1999. Gene Expression In Space. Nat. Med. 5, 359-360.
  • Horneck G., Rettberg P., Kozubek S., Baumstarkkhan C., Rink H., Schafer M., Schmitz C., 1997. The Influence Of Microgravity On Repair Of Radiation-induced Dna Damage In Bacteria And Human Fibroblasts. Radiat. Res. 147, 376-384.
  • Horstmann M., Durante M., Johannes C., Pieper R., Obe G., 2005. Space Radiation Does Not Induce A Significant Increase Of Intrachromosomal Exchanges In Astronauts’ Lymphocytes. Radiat. Environ. Biophys. 44, 219-224.
  • Källberg A., 2004. Radiation Problems In Manned Mars Missions. Swedish Institute Of Space Physics: Kowalska M., Wójcik A., 1999. Aberracje Chromosomowe Jako Biologiczny Dozymetr Promieniowania Jonizującego. Postępy Techniki Jądrowej 42, 31-36.
  • Ncrp, 1989. Guidance On Radiation Received In Space Activities. Ncrp Report No 98. Pfeiffer P., Goedecke W., Obe G., 2000. Mechanisms Of Dna Double-strand Break Repair And Their Potential To Induce Chromosomal Aberrations. Mutagenesis 15, 289-302.
  • Pietrzykowska I., Krwawicz J., 1999. Mechanizmy Naprawy Dna U Bakterii I Człowieka. Kosmos 48, 315-328.
  • Polaczek P., 1999. Reperacja źle Sparowanych Zasad W Dna: Ewolucja Systemu Od Bakterii Do Człowieka. Kosmos 48, 353-358.
  • Savage J. R., 1976. Classification And Relationships Of Induced Chromosomal Structural Changes. J. Med. Genet. 13, 103-122.
  • Szumiel I., 1994. Ionizing Radiation-induced Cell Death. International J. Radiat. Biol. 66, 329-341.
  • Szumiel I., 1998. Monitoring And Signaling Of Radiation-induced Damage In Mammalian Cells. Radiat. Res. 150 (suppl.), S92-s101.
  • Szumiel I., Sochanowicz B., 1998. Signal Transfer In The Cellular Response To Ionizing Radiation. Nukleonika 43, 133-146.
  • Testard I., Ricoul M., Hoffschir F., Flury-herard A., Dutrillaux B., Fedorenko B., Gerasimenko V., Sabatier L., 1996. Radiation-induced Chromosome Damage In Astronauts Lymphocytes. Int. J. Radiat. Biol. 70, 403-411.
  • Townsend L. W., 2005. Implications Of The Space Radiation Environment For Human Exploration In Deep Space. Radiat. Protect. Dosim. 115, 44-50.
  • Tudek B., 1999. Mechanizmy Naprawy Utlenionych Zasad Dna. Kosmos 48, 339-352.
  • Wójcik A., 1995. Technika Malowania Chromosomów I Jej Zastosowanie W Radiobiologii. Kosmos 44, 115-128.
  • Wu H., George K., Willingham V., Cucinotta F. A., 2001. Comparison Of Chromosome Aberration Frequencies In Pre-and Post-flight Astronauts Irradiated In Vitro With Gamma Rays. Physica Medica 17 (suppl. 1), 229-231.
  • Zdzienicka, M. Z., 1999. Mechanizmy Naprawy Podwójnych Pęknięć Dna (dsb) W Komórkach Ssaków: Podstawy Molekularne I Konsekwencje Biologiczne. Kosmos 48, 359-365.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.