Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 4 | 321-330
Article title

Rozciąganie molekuł białek — porównywanie ich własności mechanicznych

Title variants
Stretching of molecules of proteins — comparison of their mechanical properties
Languages of publication
Mechanical stretching of single proteins has been studied experimentally for about 55 proteins yielding a variety of force patterns and peak forces. Here, we perform a theoretical survey of proteins of known native structure and map out the landscape of possible dynamical behaviors under stretching at a constant speed. We consider 7510 proteins each comprising not more than 150 amino acids. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and correlations with the system size and with the structure classification as characterized by the hierarchical classification of protein domain structures (CATH). Despite the presence of such correlations, proteins with the same CATH index may belong to different classes of the dynamical behavior. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel β-strands, but other mechanisms are also possible.
Physical description
  • Instytut Fizyki, PAN, Al. Lotników 32/46, 02-668 Warszawa, Polska
  • Instytut Fizyki, PAN, Al. Lotników 32/46, 02-668 Warszawa, Polska
  • Abe H., Go N., 1981. Noninteracting Local-structure Model Of Folding And Unfolding Transition In Globular Proteins. Ii. Application To Two-dimensional Lattice Proteins. Biopolymers 20, 1013-1031.
  • Alam M.t., Yamada T., Carlsson U., Ikai A., 2002. The Importance Of Being Knotted: Effects Of The C-terminal Knot Structure On Enzymatic And Mechanical Properties Of Bovine Carbonic Anhydrase. Febs Letters 519, 3-40.
  • Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., 2000. The Protein Data Bank. Nucleic Acids Res. 28 235-242.
  • Best R. B., Li B., Steward A., Daggett V., Clarke J., 2001. Can Non-mechanical Proteins Withstand Force? Stretching Barnase By Atomic Force Microscopy And Molecular Dynamics Simulation. Biophys. J. 81, 2344-2356.
  • Brockwell D. J., Paci E., Zinober R. C., Beddard G. S., Olmsted P., Smith D. A., Pernham R. N., Radford S. E., 2003. Pulling Geometry Defines Mechanical Resistance Of B-sheet Protein. Nat. Struct. Biol. 10, 731-737.
  • Brockwell D. J., Godfrey S., Beddard G. S., Paci E., West D. K., Olmsted P. D., Smith D. A., Radford S. E., 2005. Mechanically Unfolding Small Topologically Simple Protein L. Biophys. J. 89, 506-519.
  • Carl P., Kwok C. H., Manderson G., Speicher D. W., Discher D. E., 2001. Force Unfolding Modulated By Disulphide Bonds In The Ig Domains Of A Cell Adhesion Molecule. Proc. Natl. Acad. Sci. Usa 98, 1565-1570.
  • Carrion-vazquez M. , Oberhauser A. F., Fischer T. E., Marszalek P. E., Li H., Fernandez J. M., 2000. Mechanical Design Of Proteins Studied By Singlemolecule Force Spectroscopy And Protein Engineering. Prog. Biophys. Mol. Biol. 74 63-91.
  • Carrion-vazquez M., Li H., Lu H., Marszalek P. E., Oberhauser A. F., Fernandez J. M., 2003. The Mechanical Stability Of Ubiquitin Is Linkage Dependent. Nat. Struct. Biol. 10 738-743.
  • Cieplak M., Hoang T. X., 2003. Universality Classes In Folding Times Of Proteins. Biophys. J. 84 475-488.
  • Cieplak M., Hoang T. X., Robbins M. O., 2004. Thermal Effects In Stretching Of Go-like Models Of Titin And Secondary Structures. Proteins: Struct. Funct. Bio. 56, 285-297.
  • Cieplak M., Pastore A., Hoang T. X., 2005. Mechanical Properties Of The Domains Of Titin In A Golike Model. J. Chem. Phys. 122 054906.
  • Cieplak M., Filipek S., Janovjak H., Krzysko K. A., 2006. Pulling Single Bacteriorhodopsin Out Of A Membrane: Comparison Of Simulation And Experiment. Bioch. Biophys. Acta 1758 537-544.
  • Fernandez J. M., Li H., 2004. Force-clamp Spectroscopy Monitors The Folding Trajectory Of A Single Protein. Science 303 1674.
  • Janovjak H., Kessler M., Oesterhelt D., Gaub H., Muller D. J., 2003. Unfolding Pathways Of Native Bacteriorhodopsin Depend On Temperature. Embo J. 22, 5220-5229.
  • Kwiecinska J. I., Cieplak M., 2005. Chirality And Protein Folding. J. Phys.: Cond. Mat. 17, S1565-s1580.
  • Law R., Carl P., S. Harper, Dalhaimer P., Speicher D. W., Discher D. E., 2003. Cooperativity In Force Unfolding Of Tandem Spectrin Repeats. Biophys. J. 84, 533-544.
  • Lee G., Abdi K., Jiang Y., Michaely P., Bennett V., Marszalek P., 2006. Nanospring Behavior Of Ankyrin Repeats. Nature 440, 246-249.
  • Li H., Linke W. A., Oberhauser A. F., Carrion-vazquez M., Kerkviliet J. G., Lu H., Marszalek P. E., Fernandez J. M., 2002. Reverse Engineering Of The Giant Muscle Protein Titin. Nature 418, 998-1002.
  • Li L. W., Wetzel S., Pluckthun A., Fernandez, J. M., 2006. Stepwise Unfolding Of Ankyrin Repeats In A Single Protein Revealed By Atomic Force Microscopy. Biophys. J. 90, L30-32.
  • Li P. -C., Makarov D. E., 2004. Simulation Of The Mechanical Unfolding Of Ubiquitin: Probing Different Unfolding Reaction Coordinates By Changing The Pulling Geometry. J. Chem. Phys. 121, 4826-4832.
  • Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K., 1998. Unfolding Of Titin Immunoglobulin Domains By Steered Molecular Dynamics Simulation. Biophys. J. 75, 662-671.
  • Orengo C. A., Micchie A. D., Jones S., Jones D. T., Swindels M. B., Thornton J. M., 1997. Cath — A Hierarchical Classification Of Protein Domain Structures. Structure 5, 1093-1108.
  • Schlierf M., Li H., Fernandez J. M., 2004. The Unfolding Kinetics Of Ubiquitin Captured With Single-molecule Force-clamp Techniques. Proc. Natl. Acad. Sci. 101, 7299.
  • Schwaiger I., Kardinal A., Schleicher M., Noegel A. A., Rief M., 2004. A Mechanical Unfolding Intermediate In An Actin-crosslinking Protein. Nat. Struct. Mol. Biol. 11, 81-85.
  • Szymczak P., Cieplak M., 2006. Stretching Of Proteins In A Uniform Flow. J. Chem. Phys. 125, 164903. Tsai J., Taylor R., Chothia C., Gerstein M., 1999. The Packing Density In Proteins: Standard Radii And Volumes. J. Mol. Biol. 290, 253-266.
  • Veitshans T., Klimov D., Thirumalai D., 1997. Protein Folding Kinetics: Time Scales, Pathways And Energy Landscapes In Terms Of Sequence-dependent Properties. Folding Des. 2, 1-22.
  • West D. K., Brockwell D. J., Olmsted P. D., Radford S. E., Paci E., 2006. Mechanical Resistance Of Proteins Explained Using Simple Molecular Models. Bioph. J. 90, 287-297.
  • Yang G., Cecconi C., Baase W. A., Vetter I. R., Breyer W. A., Haack J. A., Matthews B. W., Dahlquist F. W., Bustamante C., 2000. Solid-state Synthesis And Mechanical Unfolding Of Polymers Of T4 Lysozyme. Proc. Nat. Acad. Sci. Usa 97, 139-144.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.