Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 4 | 307-320
Article title

Drobnoustroje psychrofilne i ich biotechnologiczny potencjał

Title variants
Psychrophilic microorganisms and their biotechnological potential
Languages of publication
Research concerning extremophilic microorganisms have appreciably extended our knowledge about the life limits. Psychrophiles, which are coldadapted microorganisms (some thrive even at -20°C) rank the first in abundance to the other groups of extremophiles. They populate the harshest environments on Earth, like permafrost, marine and glaciers ice, the highest parts of mountains, clouds and stratosphere. Psychrophiles have developed numerous molecular adaptations, without which they would not be able to persist in cold biotops. They produce protective exopolymers and low molecular weight cryoprotectants, polyunsaturated and branched fatty acids, which provide the appropriate fluidity of cell membranes — essential for the communication with the environment, and different sorts of proteins, like ice nucleating proteins, cold shock and cold acclimation proteins and enzymes, characterized by molecular and kinetic adaptations to catalysis of metabolic reactions at low temperatures. All these biomolecules are extremely interesting for biotechnologists because they can either widen the assortment of products applicable to industry and medicine or be valuable molecular tools to be used in biotechnology for the manufacture of these products. The properties of psychrophilic microorganisms imply that development of life is possible also in some extraterrestrial environments.
Physical description
  • Instytut Biochemii Technicznej Politechniki Łódzkiej, Stefanowskiego 4/10, 90-924 Łódź, Polska
  • Aghajari N., Feller G., Gerday Ch., Haser R., 1998. Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanktis in its native form and complexe with an inhibitor. Protein Sci. 7, 564-572.
  • Alvarez M., Zeelen J. P., Mainfroid V., Rentier-Delure F., Martial J. A., Wyns L., Wieranga R. K, Maes D., 1998. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties. J. Biol. Chem. 273, 2199-2206.
  • Amato P., Parazols M., Sancelme M., Laj P., Mailhot G., Delort A. M., 2006. Microbial populations in clouds: implication on cloud chemistry. Int. Conference on Alpine and Polar Microbiology, Innsbruck- Austria, 27-31 March. Book of abstracts, L15, 23.
  • Arnorsdott ir J., Kristjansson M. M., Ficner R., 2005. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveal structural aspects of cold adaptation. FEBS J. 272, 832-845.
  • Bakermans C., Ayala-del-Rio H. L., Ponder M. A., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M., 2006. Psychrobacter cryohalolentis
  • sp. nov., Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int. J. Syst. Evol. Microbiol. 56, 1285-1281.
  • Bakermans C., Nealson K. H., 2004. Relationship of critical temperature to macromolecules synthesis and growth yield in psychrobacter cryopegella. J. Bacteriol. 186, 2340-2345
  • Breezee J., Cady N., Staley J. T., 2004. Subfreezing growth of the see-ice bacterioum Psychromonas inrahamii. Microb. Ecol. 47, 300-304.
  • Cavicchioli R., Siddiqui K. S., Andrews D., Sowers K. R., 2002. Low-temperatures extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253-261.
  • Cavicchioli R., 2006. Cold-adapted archea. Nature Microbiol. 4, 331-343.
  • Ciaramella M., Napoli A., Rossi M., 2005. Another extreme genome: how to live at pH 0. Trends Microbiol. 13, 49-51.
  • Deming J. W., 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5, 301-309.
  • Fujiwara S., 2002. Extremophiles: developments of their special function and potential resources. J. Biosci. Bioeng. 94,518-525.
  • Georlett e D., Blaise V., Collins T., D’Amico S., Gratia E., Hoyoux A., Marxs J. C., Sonan G., Feller G., Gerday Ch., 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28, 25-42.
  • Gerday Ch., Aitt aleb M., Bentahir M., Chessa J.-P., Claverie P., Collins T., D’Amico S., Dumont J., Garsoux G., Georlett e D., Hoyoux A., Lonhienne T., Meuwis M.-A., Feller G., 2000. Cold-adapted
  • enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107.
  • Gilichinsky D., Rivkina E., Shcherbakova V., Laurinavichuis K., Tiedje J., 2003. Supercooled water brines within permafrost — an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3, 331-341.
  • Gilichinsky D., Rivkina E., Bakermans C., Shcherbakova V., Petrovskaya L., Ozerskaya S., Ivanushkina N., Kochkina G., Laurinavichuis K., Pecheristina S., Fatt akhova R., Tedje J.M., 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53, 117-128.
  • Gomes J., Steiner W., 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42, 223-235.
  • Haggblom M., 2005. Microbial life in cold ecosystems. FEMS Microbiol. Ecol. 53, 1-2.
  • Helland R., Larsen A. N., Smalas A. D., Willasen N. D., 2006. Proteinase K-like proteinase from Seratia sp. FEBS J. 273, 61-71.
  • Hoyoux A., Blaise V., Collins T., D’Amico S., Grattia E., Huston A. L., Marx J.-C., Sonan G., Zeng Y., Feller G., Gerday Ch., 2004. Extreme catalyst from low-temperature environments. J. Biosci. Bioeng. 98, 317-330.
  • Javaux E. J., 2006. Extreme life on Earth — past, present and possibly beyond. Res. Microbiol.157, 37-48.
  • Junge K., Eicken H., Deming J. W., 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70, 550-557.
  • Junge K., Eicken H., Swanson B. D., Deming J. W., 2006. Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52, 417-429.
  • Kalinowska H., Zielińska M., Kuras E., Kasieczka M., Piotrowska-Wasiak M., Majda T., Turkiewicz M., 2005. Zastosowanie enzymów drobnoustrojów antarktycznych w biosyntezie wielonienasyconych kwasów tłuszczowych. [W:] Enzymatyczna modyfikacja składników żywności. Kołakowski E., Bednarski W., Bielecki S. (red.). Wydawnictwo AR w Szczecinie, 373-382.
  • Kaufm an A., Turkiewicz M., 2004. Białka szoku zimna mikroorganizmów. Post. Biochem. 50, 32-44.
  • Kawahara H., 2002. The structure and function of ice crystal-controlling protein from bacteria. J. Biosci. Bioeng. 94,492-496.
  • Kim S. Y., Hwang K. Y, Kim S. H., Sung H. C., Han Y. S., Cho Y., 1999. Structural basis for cold adaptation. Sequence, biochemical properies and crystal structure of malate dehydrogenase from psychrophile Aquaspirillum arcticum. J. Biol. Chem. 177, 11761-11767.
  • Mandelman D., Bentahir M., Feller G., Gerday Ch., Haser R., 2001. Crystallization and preliminary X-ray analysis of a bacterial psychrophilic enzyme, phosphoglycerate kinase. Acta Crystallogr. D. Biol. Crystallogr. 57, 1666-1668.
  • Marion G. M., Fritsen C. H., Eicken H., Payne M. C., 2003. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3, 785-811.
  • Methé B., Nelson K. E., Fraser C. M., 2004. It’s a cold world out there (but the prospects are hot). Trends Microbiol. 12, 532-534.
  • Methé B., Nelson K. E., Deming J. W., Momen B., Melamud B., Zhang X., Moult J., Madupu R., Nelson W., Dodson R. J., Brinkac L. M., Daugherty S. C., Durkin A. S., DeBoy R. T., Kolonay J. F., Sullivan S. W. A., Zhou L., Davidson T. M., Wu M., Huston A. L., Lewis M., Weaver B., Weidm an J. F., Khouri H., Utt erback T. R., Feldblyum T. V., Fraser C. M., 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Nat. Acad. Sci. USA 102, 10913-10918.
  • Morita R. Y., 1975. Psychrophilic bacteria. Bacteriol. Rev. 39,144-167.
  • Nichols D., Bowman J., Sanderson K., Nichols K. M., Lewis T., McMeekin T., Nichols P. D., 1999. Developments with Antarctic microorganisms: culture collections, screening, taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol. 10, 240-246.
  • Pakchung A. A. H., Simpson P. J. L., Codd R., 2006. Life on Earth. Extremophiles continue to move the goal posts. Environ. Chem. 3, 77-93.
  • Papanikolan Y., Tisgos J., Papadovasilaki M., Boriotis V., Petratos K., 2005. Crystallization and preliminary X-ray diffraction studies of an alcohol dehydrogenase from the Antarctic Moraxella sp. TAE123. Acta Crystal. F 61, 246-248.
  • Ponder M. A., Gilmour S. J., Bregholtz P. W., Mindock C. A., Hollingsworth R., Russel R. M. J., Gerike U., Danson M. J., Hough D. W., Taylor G. L., 1998. Structural adaptations of the cold active citrate synthase from an Antarctic bacterium. Structure 6, 351-361.
  • Satyanaryana T., Raghukumar Ch., Shivaji S., 2005. Extremophilic microbes: diversity and perspectives. Curr. Sci. 89, 78-90.
  • Schiraldi Ch., De Rosa M., 2002. The production of biocatalyst and biomolecules from extremophiles. Trends Biotechnol. 20, 515-521.
  • Sellek G. A., Chaudhuri J. B., 1999. Biocatalysis in organic media using enzymes from extremophiles. Enz. Microb. Technol. 25, 471-482.
  • Święcicka J., Buczek J., Hauschild T., 1997. Psychrofile i psychrotrofy. Post. Microbiol. 36, 53-70.
  • Thomas D. N., 2005. Photosynthetic microbes in freezing deserts. Trends Microbiol. 13, 87-88.
  • Thomashow M. F., Tedje J. M., 2005. Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol. Ecol. 53, 103-115.
  • Tsuruta H., Mikami B., Aizona Y., 2005. Crystal structure of cold active protein-tyrosine phosphatase from a psychrophile Schewanella sp. J. Biochem. 137, 69-77.
  • Tung H. C., Bramall N. E., Price P. B., 2005. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Nat. Acad. Sci. USA 102, 18291-18296.
  • Tung H. C., Price P. B., Bramall N. E., Vrdoljak G., 2006. Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6, 69-86.
  • Turkiewicz M., 1999. Białka termicznej histerezy — struktura, funkcja, znaczenie użytkowe. Biotechnologia 44,11-33.
  • Turkiewicz M., Gromek E., 2000. Enzymy drobnoustrojów psychrofilnych i ich biotechnologiczne zastosowanie. Biotechnologia 48, 171-188. Turkiewicz M., 2003. Perspektywy biokatalizy. Biotechnologia 61, 316-336.
  • Van Petegem F., Collins T., Meuwis M. A., Gerday Ch., Feller G., Van Beemen J., 2003. The structure of a cold-adapted family 8 xylanase at 1,3 A resolution. Structural adaptations to cold and investigation of the active site. J. Biol. Chem. 278, 7531-7539.
  • Villeret J. V., Chessa J. P., Gerday Ch., van Beeumen J., 1997. Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa. Protein Sci. 6, 2462-2464.
  • Violot S., Czjzek M., Gerday Ch., Aghajari N., 2005. Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J. Mol. Biol. 348, 1211-1224.
  • Vishnivetskaya T. A., Petrova M. A., Urbance J., Moyer C. L., Gilichinsky D. A., Tedje J. M., 2006. Bacterial community in ancient Siberian permafrost as characterized by culture and cultureindependent methods. Astrobiology 6, 400-414.
  • Wainwright M., Wichramasinghe N. C., Narlikar J. V., Rajaratman P., Perkins J., 2004. Confirmation of the presence of viable but non-cultureable bacteria in the stratosphere. Int. J. Astrobiol. 3, 13-15.
  • Wickramasinghe Ch., 2004. The universe: a cryogenic habitat for microbial life. Cryobiology 48, 113-125.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.