PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2006 | 55 | 2-3 | 243-257
Article title

Różnorodne funkcje węgla i azotu w roślinach

Authors
Content
Title variants
EN
Multiple functions of carbon and nitrogen in plants
Languages of publication
PL EN
Abstracts
EN
The paper reviews recent progress in knowledge of multiple functions played by carbon and nitrogen in plants, of assimilation and metabolism of these elements and of their role as signaling molecules. Special attention is paid to the relationship between photosynthetic production of carbohydrates and their reoxidation in respiration yielding energy required for nitrogen assimilation. Integration of these processes takes place at intracellular, intercellular and interorgan levels. The role of vegetative storage proteins (VSp) and starch, as storage substances, as well as regulatory function of trehalose is presented, especially under stress conditions. Sugars and nitrogen metabolites (nitrate and ammonium) function as signals of plant current status of the C/N ratio at various level of its organization: from regulation of gene expression to growth rate of shoot and root. This allows quick modification of nitrate or amonia uptake and, in consequence, of the program of plant growth. Changes of environmental conditions affecting assimilation and metabolism of carbon and nitrogen may cause plant starvation and a disproportion in the C/N ratio. plants must therefore regulate sophistically cross-talk between carbon and nitrogen metabolism to ensure their homeostasis.
Keywords
Journal
Year
Volume
55
Issue
2-3
Pages
243-257
Physical description
Dates
published
2006
Contributors
author
  • Katedra Fizjologii Rośli Wydział Rolnictwa i Biologii Szkoła Główna Gospodarstwa Wiejskiego i, Nowoursynowska 159, 02-776 Warszawa, Polska
References
  • Adlassing W., Peroutka M., Lambers H., Lichtscheidl J. K., 2005. The roots of carnivorous plants Plant Soil 274, 127-140.
  • Backer L., Kühn C., Weis A., Schulz A., Gebhardt C., Hirner B., Hellman H., Schulze W., Ward J. M., Frommer W. B. 2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12, 1153-1164.
  • Bi Y.-m., Zhang Y., Signorelli T., Zhao R., Zhu T., Rothstein S., 2005. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J. 44, 680-692.
  • Bläsing O. E., Gibon Y., Günther M., Höhne M., Morcuende R., Osuna D., Thimm O., Usadel B., Scheible W.-R., Stitt M., 2005. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression. Plant Cell 17, 3257-3281.
  • Boe H., Herman E., Bailey B., Bae H.-j., Sicher R., 2005. Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification abiotic stress, nitrogen metabolism and plant defense. Physiol. Plant. 125, 114-126.
  • Britto. D. T., Kronzucker H. J., 2002. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567-584.
  • Chapin III. F. S., Schulze E. D., Mooney H. A., 1990. The ecology and economics of storage in plants. Annu. Rev. Ecol. System 21, 423-447.
  • Chiou T.-J., Bush D. R., 1998. Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. USA 95, 4784-4788.
  • Cieresz ko I., 2002. Regulacyjna rola cukrów, percepcja cukrów i przekazywanie sygnału w komórkach roślinnych. Postępy Biol. Kom. 29, 269-289.
  • Cieresz ko I., Johanss on H., Kleczkows ki L. A., 2005. Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. 162, 343-353.
  • Cooke J. E. K., Martin T. A., Davis J. M., 2005. Shortterm physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytologist 167, 41-52.
  • Couěe I., Sulmon C., Gouesbet G., Armani A. E., 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57, 449-459.
  • Crawford N. M., 1995. Nutrient and signal for plant growth. Plant Cell 7, 859-868.
  • Cruz C., Bio A. F. M., Dominguez-valdivia M. D., Aparicio-tejo P. M., Lamsfus C., Martins-loucao M. A., 2006. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 223, 1068-1080.
  • Dewald D. B., Sadka A., Mullet J. E., 1994. Sucrose modulation of soybean Vsp gene expression is inhibited by auxin. Plant Physiol. 104, 439-444.
  • Dhont C., Castonguay Y., Nadeau P., Balanger G., Drapeau R., Avice J. C., Chalifour F. P., 2006. Nitrogen reserves, spring regrowth and winter survival of field alfalfa (Medicago sativa) defoliated in the autumn. Ann. Botany 97, 109-120.
  • Eastmond P. J., Van Dijken A. J. H., Spielmann M., Kerr A., Tiss ier A. F., Dickinson H. G., Jones J. D. G., Smeekens S. C., Graha, I. A., 2002. Trehalose- 6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 29, 225-235.
  • Ellison A. M., Gotelli N. J., 2001. Evolutionary ecology of carnivorous plants. Trends Ecol. 16, 623-629.
  • Escobar M. A., Geisler D. A., Rasmuss on A. G., 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 45, 775-788.
  • Farrar J., Pollock C., Gallagher J., 2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci. 154, 1-11.
  • Foyer C. H., Noctor G. 2002. Photosynthetic nitrogen assimilation: inter-pathway control and signaling. [W:] Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Foyer C. H., Noctor G. (red.). Kluwer Academic Publishers, Netherlands, 1-22
  • Foyer C. H., Noctor G., Lelandais M., Leascure J. C., Valadier., M. H., Boutin J. P., Horton P., 1994. Short-term effects of nitrate, nitrite and ammonium assimilation on phtosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192, 211-220.
  • Foyer C. H., Ferrario-mery S., Huber S. C. 2000. Regulation of carbon fluxes in the cytosol: coordination of sucrose synthesis, nitrate reduction and organic acid and amino acid biosynthesis.[W:] Photosynthesis: physiology and metabolism. Leegood R. C. Sharkey T. D., Von Caemerer S. (red.). Acad. Publishers, Netherland, 177-203.
  • Franceschi V. R., Giaquinta R. T. 1983. The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. Planta 157, 422-431.
  • Gardeström P., Igamberdiev A. U., Raghavendra A. S., 2002. Mitochondrial functions in the light and significance to carbon-nitrogen interactions. [W:] Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Foyer C. H., Noctor G. (red.). Kluwer Academic Publishers, Netherlands, 151-172.
  • Gazz arini S., Mccourt P., 2001. Genetic interaction between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4, 387-391.
  • Gazz arini S., Lejay L., Gojon A., Ninnemann O., Frommer W. B., Von Wiren, 1999.Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11, 937-947.
  • Geigenberger P., Kolbe A., Tiess en A., 2005. Redox regulation of carbon storage and partitioning in response to light and sugars. J. Exp. Bot. 56, 1469-1479.
  • Gibson S. I., 2004. Sugar and phytohormone response pathways navigating a signalling network. J. Exp. Bot. 55, 253-264.
  • Gibson S. I., 2005. Control of plant development and gene expression by sugar signalling. Curr. Opin. Plant Biol. 8, 93-102.
  • Goddijn O., Smeekens S. C. M., 1998. Sensing trehalose biosynthesis in plants. Plant J. 14, 315-319.
  • Goddijn O. J. M., Van Dun K., 1999. Trehalose metabolism in plants. Trends Plant Sci. 4, 315-319.
  • Gross man A., Takahashi H., 2001. Macronutrient utilization by photosynthetic eucariotes and the fabric of interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 153-210.
  • Jang J. C., Sheen J., 1994. Sugar sensing in higher plants. Plant Cell 6, 1665-1679.
  • Jang J. C., León P., Sheen J., 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5-19.
  • Kaiser W. M., Weiner H., Kandlbinder A., Tsai C. B., Rockel P., Sonoda M., Planchet E., 2002. Modulation of nitrate reductase: some new insight, an unusual case and a potentially important side reaction. J. Exp. Bot. 53, 875-882.
  • Koch K. E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 47, 509-540.
  • Koch K., 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235-246.
  • Kuiper D., 1988. Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply. Plant Physiol. 87, 555-557.
  • Lasa B., Frechilla S., Aparicio-tejo M., Lamsfus C., 2002. Alternative pathway respiration is associated with ammonium ion sensitivity in spinach and pea plants. Plant Growth Regul. 37, 49-55.
  • Lejay L., Gansel X., Cerezo M., Tillard P., Műller C., Krapp A., Van Wiren N., Daniel-vedere F., Gojon A., 2003. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15, 2218-2232.
  • Loque D., Von Wiren N., 2004. Regulatory levels for the transport of ammonium in plant roots. J. Exp. Bot. 55, 1293-1305.
  • Madsen E., 1976. Effect of CO2 concentration on morphological, cytological and physiological processes in tomato plants. State Seed Testing Station. Skovbrynet 20. D.K.-2800 Lyngby. Denmark.
  • Martin T., Osw ald O., Graham I. A. 2002. Arabidopsis seedling growth, storage lipid mobilisation, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol. 128, 472-481.
  • Masclaux-Daubress e C., Valadier M. h., Carrayol E., Reisdorf-cren M., Hirel B., 2002. Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves Plant Cell Environ. 25, 1451-1462.
  • Morkunas I., Lehmann T., Ratajczak W., Ratajczak L., Tomasz ews ka B., 2000.The involvement of glutamate dehydrogenase in the adaptation of mitochondria to oxidize glutamate in sucrose starved pea embryos. Acta Physiol. Plant. 22, 389-394.
  • Muñoz F. J., Baroja-fernandez E., Morán-zorzano M. T., Viale A. J., Etxeberria E., Alonso-casajus N., Pozueta-romero J., 2005. Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46, 1366-1376.
  • Okamoto M., Vidmar J. J., Glass A. D. M. 2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 44, 304-317.
  • Paul M., Pellny T., Goddijn O., 2001. Enhancing photosynthesis with sugar signals. Trends Plant Sci. 6, 197-200.
  • Pego J. V., Kortstee A. J., Huijser C., Smeekens S. C. M., 2000. Photosynthesis, sugars and the regulation of gene expression. J. Exp. Bot. 51, 407-416.
  • Rahayu Y. S., Walch-liu P., Neumann G., Römheld V., Von Wiren N., Bangerth F., 2005. Root-derived cytokinins as long-distance signals for NO3 — induced stimulation of leaf growth. J. Exp. Bot. 56, 1143-1152.
  • Raven J. A., Handley L. L., Andrews M., 2004. Global aspects of C/N interactions determining plant-environment interactions. J. Exp. Bot, 55, 11-25.
  • Richard-Molard C., Brugiere N., Moille M., Carrayol E., Limami A. M., 2004. Molecular characterization of a gene encoding a vegetative storage protein (CiVSP) from Cichoriun intybus and its expression in the root and shoot in relation to nitrogen status and pathogen resistance. Physiol. Plant. 121, 568-577.
  • Salerno G. L., Curatti L. 2003. Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci. 8, 63-69.
  • Scheible W. R., Laurerer M., Schulze E. D., Caboche M., Stitt M., 1997. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11, 671-691.
  • Schluepmann H., Van Dijken A., Aghdasi M., Wobbes B., Paul M., Sheen J., Zhou L., Jang J.-C., 1999. Sugars as signalling molecules. Curr. Opin. Plant Biol. 2, 410-418.
  • Smeekens S., 2000. Sugar-induced signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49-81.
  • Smeekens S., 2004, Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose- 6-phsphate accumulation. Plant Physiol. 135, 876-890.
  • Starck Z., 2002. Mechanizmy integracji procesów fotosyntezy i dystrybucji biomasy w niekorzystnych warunkach środowiska. Zeszyty Problemowe Postępów Nauk Rolniczych, 481, 113-123.
  • Starck Z., 2003. Transport i dystrybucja substancji pokarmowych w roślinach. Wydawnictwo SGGW.
  • Starck Z., 2004. Plastyczność współdziałania metabolizmu azotu i węgla w niekorzystnych warunkach środowiska. Zeszyty Problemowe Postępów Nauk Rolniczych, 496, 83-102.
  • Starck Z., 2005. Reakcje roślin na abiotyczne stresy środowiskowe — aklimatyzacja i adaptacja. Łąkarstwo w Polsce 8, 173-184.
  • Starck Z., 2006. Role of conducting system in transduction of long-distance stress signals. Acta Physiol. Plant. 28, 289-308.
  • Starck Z., Bogdan J., Chołuj D., 1997. Effect of phosphorus and potassium supply on tomato plant response to chilling stress. [W:] Crop development for the cool and wet regions of Europe. Sowiński O., Zagdańska B., Anioł A., Pithan K. (red.). COST 814-II, 9-56.
  • Stasw ick P. E., Huang J.-f. Rhee Y., 1991. Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol. 96, 130-136.
  • Stitt M., 1999. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 2, 178-186.
  • Stitt M., Hurry V., 2002. A plant for all seasons: alternations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5, 199-206.
  • Sturm. A., Tang G. Q., 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4, 401-407.
  • Szadel A., Lorenc-Plucińska G., 2002. Metabolizm sacharozy u roślin oraz jego regulacja w warunkach stresów środowiskowych. Postępy Biol. Kom. 29, 47-59.
  • Takei K., Takahashi T., Sugiyamat., Yamaya T., Sakakibara F., 2002. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J. Exp. Bot. 53, 971-977.
  • Takei K., Ueda N., Aoki K., Kuromori T., Hirayama T., Shinozaki K., 2004. AtIPT3 is key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol. 45, 1053-1062.
  • Tucker D. E., Allen D. J., Ort D. R., 2004. Control of nitrate reductase by circadian and diurnal rhythms in tomato. Planta 219, 277-285.
  • Van Dijken A. J. H., Scluepmann H., Smeekens C. M., 2004. Arabidopsis trehalose -6-phophate synthase 1 is essential for normal vegetative growth and transition of flowering. Plant Physiol. 135, 969-977.
  • Von Wiren N., Gazz arini S., Gojon A., Frommer W. B., 2000. The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol. 3, 254-261.
  • Wang R., Tischner R., Gutiěrrez R. A., Hoffman M., Xing X., Chen M., Corruzi G., Crawford N. M., 2004. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136, 2512-2522.
  • Weber H., Golombek S., Borysjuk L., Manteuffel R., Wobus U., 1998. Expression of a yeast-derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant J. 16, 163-172.
  • Weschke W., Panitz R., Gubatz S., Wang Q., Radchuk R., Weber H.m, Wobus U., 2003. The role of invertase and hexose transporters in controlling sugar ratio in material and filial tissues of barley caryopses during early development. Plant J. 33, 395-411.
  • Wingler A., 2002. The function of trehalose biosynthesis in plants. Photochemistry 60, 437-440.
  • Wolska-Mitasz ko B., 2001. Trehalosa — substancja przedziwna. Właściwości, występowanie, zastosowanie. Biotechnologia 2, 36-53.
  • Yang Z., Zhang L., Diao F., Huang M., Wu N., 2004. Sucrose regulates elongation of carrot somatic embryo radicles as a signal molecule. Plant Mol. Biol. 54, 441-459.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv55p243kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.