Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2006 | 55 | 2-3 | 229-241

Article title

Kontrola metabolizmu sacharozy u roślin w odpowiedzi na zmienne warunki środowiska

Authors

Content

Title variants

EN
Sucrose metabolism control in plants as response to changes of environmental conditions

Languages of publication

PL EN

Abstracts

EN
Sucrose is a final product of photosynthesis; it is transported to the sink organs of a plant where it is used as substrate, metabolized to other organic compounds or stored. Besides, sucrose has a nonnutritive role — controlling plant growth, development and regulation of cell metabolism. This review summarizes information on the key enzymes of sucrose synthesis and breakdown, and regulations of their activity (transcriptional, translational control or posttranslational modifications) under unfavourable conditions. Changes of carbohydrate concentration in tissues have been frequently shown to be involved in plant responses to different stresses. Changes in sugar content influence the expression of various genes via a variety of signal transduction pathways. The regulatory role of sucrose, e.g. control of its own metabolism, and possible interactions of sugarresponse pathways with other signalling events are discussed.

Keywords

Journal

Year

Volume

55

Issue

2-3

Pages

229-241

Physical description

Dates

published
2006

Contributors

  • Zakład Fizjologii Roślin, Instytut Biologii Uniwersytet w Białymstoku, Świerkowa 20b, 15-950 Białystok, Polska

References

  • Ap Rees t., 1995. What next? [W:] Sucrose metabolism, biochemistry, physiology and molecular biology. Pontis H. G., Salerno G. L., Echeverria E. J. (red.). Proceedings international symposium on sucrose metabolism, Mar del Plata, Argentina, May 8-13, 1995. Am. Soc. Plant Physiol. Ser. 14, 278-283.
  • Baier M., Hemmann G., Holman R., Corke F., Card R., Smith C., Rook F., Bevan M. W., 2004. Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol. 134, 81-91.
  • Baroja-Fernández E., Muňoz F. J., Saikusa T., Rodrigez- López M., Akazawa T., Pozueta-Romero J., 2003. Sucrose synthase catalyses the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44, 500-509.
  • Baud S., Vaultier M.-N., Rochat C., 2004. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55, 397-409.
  • Baxter C. J., Foyer C. F., Turner J., Rolfe S. A., Quic k W. P., 2003. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J. Exp. Bot. 54, 1813-1820.
  • Borek S., Ratajczak W., 2002. Sugars as a metabolic regulator of storage protein mobilization in germinating seeds of yellow lupine (Lupineus luteus L.). Acta Physiol. Plant. 24, 425-434.
  • Ciereszko I., 2000. Wzrost i metabolizm roślin w warunkach deficytu fosforu. Kosmos 49, 179-189.
  • Ciereszko I., 2002. Regulacyjna rola cukrów. Percepcja cukrów i przekazywanie sygnału w komórkach roślinnych. Post. Biol. Kom. 29, 269-289.
  • Ciereszko I., Barbachowska A., 2000. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol. 156, 640-644.
  • Ciereszko I., Kleczkowski L. A., 2002a. Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase- dependent mechanisms. Plant Physiol. Biochem. 40, 907-911.
  • Ciereszko I., Kleczkowski L. A., 2002b. Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim. Biophys. Acta 1579, 43-49.
  • Ciereszko I., Kleczkowski L. A., 2004. Expression of UDP-glucose pyrophosphorylase gene in Arabidopsis leaves as affected by interaction of phosphate, hormones and sugar. Comp. Bioch. Physiol. 137 (Suppl. 3), 207.
  • Ciereszko I., Kleczkowski L. A., 2005. Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis. Acta Physiol. Plant. 27, 147-155.
  • Ciereszko I., Zambrzycka A., Rychter A. M., 1998. Sucrose hydrolysis in bean roots (Phaseolus vulgaris L.) under phosphate deficiency. Plant Scie. 133, 139-144
  • Ciereszko I., Farrar J. F., Rychter A. M., 1999. Compartmentation and fluxes of sugars in roots of Phaseolus vulgaris under phosphate deficiency. Biol. Plant. 42, 223-231.
  • Ciereszko I., Johansson H., Kleczkowski L. A., 2001a. Phosphate status affects the gene expression, protein content and enzymatic activity of UDPglucose pyrophosporylase in wild-type and pho mutants of Arabidopsis. Planta 212, 598-605.
  • Ciereszko I., Johansson H., Kleczkowski L. A., 2001b. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase- independent, abscisic acid-insensitive pathway in Arabidopsis. Bioch. J. 354, 67-72.
  • Ciereszko I., Janonis A., Koci akowska M., 2002. Growth and metabolism of cucumber in phosphate- deficient conditions. J. Plant Nutr. 25, 1115-1127.
  • Ciereszko I., Johansson H., Kleczkowski L. A., 2005. Interactive effects of phosphate deficiency, sugar and light/ dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. 162, 343-353.
  • Déjardi n A., Sokolov L. N, Kleczkowski L. A., 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J. 344, 503-509.
  • Delmer D. P., Haig ler C. H., 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab. Engin. 4, 22-28.
  • Drew M. C., 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223-250.
  • Duffus C. M., Duffus J. H., 1988. Metabolizm węglowodanów u roślin. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.
  • Farrar J,, Pollock C,, Gallagher J., 2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci. 154, 1-11.
  • Fernández J. J., Candenas M. L., Souto M. L., Trujillo M. M., Norte M., 2002. Okadaic acid, useful tool for studying cellular processes. Curr. Med. Chem. 9, 229-262.
  • Franco-Zorilla J. M., González E., Bustos R., Linhares F., Leyva A., Paz-Ares J., 2004. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285-293.
  • Fung R. W. M., Langenkämper G., Gardner R. C., MacRae E., 2003. Differential expression within an SPS gene family. Plant Sci. 164, 459-470.
  • Gabryś H., 2002. Procesy oddechowe. [W:] Fizjologia roślin Kopcewic z J., Lewak S. (red.). Wydawnictwo Naukowe PWN , Warszawa, 387-420.
  • Gibson S. I., 2004. Sugar and phytohormone response pathways: navigating a signalling network. J. Exp. Bot. 55, 253-264.
  • Gibson S. I., 2005. Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8, 93-102.
  • Guy C. L., 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223.
  • Hardi n S. C., Winter H., Huber S. C., 2004. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol. 134, 1427-1438.
  • Hare P. D., Cress A. W., van Staden J., 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21, 535-553.
  • Hetmann A., Kowalczyk S., 2003. Mono- i disacharydy - drożdżowymi, roślinnymi i zwierzęcymi cząsteczkami sygnałowymi regulującymi ekspresję genów. Post. Biol. Kom. 30, 87-112.
  • Hill S. A., 1998. Carbohydrate metabolism in plants. Trends Plant Sci. 3, 370-371.
  • Huber S. C., Huber J. L., 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 431-443.
  • Huber S. C., Winter H., Toroser D., Athwal G. S., 2000. Metabolic regulation of nitrate and sucrose metabolism. Plant Cell Physiol. 41S, 8. Hurry V., Strand Å., Furbank R., Stitt M., 2000. The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J. 24, 383-396.
  • Ingram J., Bartels D., 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377-403.
  • Kacperska A., 2002. Reakcje roślin na abiotyczne czynniki stresowe. [W:] Fizjologia roślin Kopcewic z J., Lewak S. (red.). Wydawnictwo Naukowe PWN , Warszawa, 512-678.
  • Kączkowski J. 1992. Biochemia roślin. Tom 1. Wydawnictwo Naukowe PWN . Warszawa. Kleczkowski L. A., Geisler M., Ciereszko I., Johansson H., 2004. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 134, 912-918.
  • Koch K. E., 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-550.
  • Koch K., 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant developmnent. Curr. Opin. Plant Biol. 7, 235-246.
  • Langenkämper G., Fung R. W. M., Newcomb R. D., Atkinson R. G., Gardner R. C., MacRae E. A., 2002. Sucrose phosphate synthase genes in plants belong to three different families. J. Mol. Evol. 54, 322-332.
  • Lee H. S., Sturm A., 1996. Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol. 112, 1513-22.
  • León P., Sheen J., 2003. Sugar and hormone connections. Trends Plant Sci. 8, 110-116.
  • Lloyd J. C., Zakhleniuk O. V., 2004. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J. Exp. Bot. 55, 1221-1230.
  • Luan S., 2003. Protein phosphatases in plants. Annu. Rev. Plant Biol. 54, 63-92.
  • Lunn J. E., MacRae E., 2003. New complexities in the synthesis of sucrose. Curr. Opin. Plant Biol. 6, 208-214.
  • Martz F., Wilczynska M., Kleczkowski L. A., 2002. Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase. Biochem. J. 367, 295-300.
  • Mic halczyk D. J., Górecki R. J., 2002. Procesy dysymilacyjne w roślinach i ich znaczenie w plonowaniu. [W:] Fizjologia plonowania roślin. Górecki R. J., Grzesiuk S. (red.). Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn, 314-352.
  • Moore B., Zhou L., Rolland F., Hall Q., Cheng W.- H., Liu Y.-X., Hwang I., Jones T., Sheen J., 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332-336.
  • Müller R., Nilsson L., Nielsen L. K., Nielsen T. H., 2005. Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol. Plant. 124, 81-90.
  • Nielsen T. H., Rung J. H., Villadsen D., 2004. Fructose- 2,6-bisphosphate: a traffic signal in plant metabolism. Trends Plant Sci. 9, 556-563.
  • Nolte K. D., Koch K. E., 1993. Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol. 101, 899-905.
  • Quic k W., Schaffer A. A., 1996. Sucrose metabolism in sources and sinks. W: Photoassimilate distribution in plants and crops. Source-sink relationship. Zamski E., Schaffer A. A. (red.). Marcel Decker Inc., 115-156.
  • Paul M. J., Pellny T. K., 2003. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 54, 539-547.
  • Pric e J., Laxmi A., Martin S. K., Jang J.-C., 2004. Global transcription profiling reveals multiple sugar signal transduction mechanism in Arabidopsis. Plant Cell 16, 2128-2150.
  • Ratajczak L., 2001. Metaboliczne współdziałanie organelli. [W:] Podstawy biologii komórki roślinnej. Woźny A., Mic hejda J., Ratajczak L. (red.). Wydawnictwo Naukowe UAM , Poznań, 488-511.
  • Rausch T., Greiner S., 2004. Plant protein inhibitors of invertases. Bioch. Bioph. Acta 1696, 253-261.
  • Roitsch T., Gonzales M.-C., 2004. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9, 606-613.
  • Roitsch T., Balibrea M. E., Hofmann M., Proels R., Sinha A. K., 2003. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot. 54, 513-524.
  • Rojo E., Zouhar J., Carter C., Kovaleva V., Raikhel N. V., 2003. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 7389-7394.
  • Rook F., Bevan M. W., 2003. Genetic approaches to understanding sugar-response pathways. J. Exp. Bot. 54, 495-501.
  • Rook F., Corke F., Card R., Munz G., Smith C., Bevan M. W., 2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 26, 421-433.
  • Rose S., Botha F. C., 2000. Distribution patterns of neutral invertase and sugar content in sugarcane internodal tissues. Plant Physiol. Biochem. 38, 819-824.
  • Rutter J., Probst B. L., McKnig ht S. L., 2002. Coordinate regulation of sugar flux and translation by PAS kinase. Cell 111, 17-28.
  • Rychter A. M., Rao I. M. 2005. Role of phosphorus in photosynthetic carbon metabolism. [W:] Handbook of Photosynthesis Pessarakli M. (red.). Wyd. II . Marcel Dekker, Inc., New York, 123-148.
  • Sergeeva L. I, Vreugd enhil D., 2002. In situ staining of activities of enzymes involved in carbohydrate metabolism in plant tissues. J. Exp. Bot. 53, 361-370.
  • Sherson S. M., Alford H. L., Forbes S. M., Wallace G., Smith S. M., 2003. Roles of cell wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot. 54, 525-531.
  • Siedlecka A., Ciereszko I., Mellerowic z E., Martz F., Chen J., Kleczkowski L. A., 2003. The small subunit ADP-glucose pyrophosphorylase (ApS) promoter mediates okadaic acid-sensitive uidA expression in starch-synthesizing tissues and cells in Arabidopsis. Planta 217, 184-192.
  • Smeekens S., 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49-81.
  • Sowokinos J. R., 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. Amer. J. Potato Res. 78, 221-236.
  • Starck Z., 2003. Transport i dystrybucja substancji pokarmowych w roślinach. Wydawnictwo SGGW, Warszawa.
  • Starck Z., 2004. Plastyczność współdziałania metabolizmu azotu i węgla w niekorzystnych warunkach środowiska. Zesz. Probl. Post. Nauk Roln. 496, 85-102.
  • Stępień K., 2002. Transdukcja sygnałów w komórce roślinnej pod wpływem stresów abiotycznych. Post. Biol. Kom. 29, 595-612.
  • Stitt M., Hurry V., 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5, 199-206.
  • Strand Å., Foyer C. H, Gustafsson P., Gardeström P., Hurry V., 2003. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ. 26, 523-535.
  • Strzałka K., 2002. Procesy anaboliczne. [W:] Fizjologia roślin. Kopcewic z J., Lewak S. (red.). Wydawnictwo Naukowe PWN , Warszawa, 330-386.
  • Sturm A., Tang G.-Q., 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4, 401-407.
  • Szadel A., Lorenc-Pluci ńska G., 2002. Metabolizm sacharozy u roślin oraz jego regulacja w warunkach stresów środowiskowych. Post. Biol. Kom. 29, 47-59.
  • Tiessen A., Prescha K., Branscheid A., Palaci os N., McKibbin R., Halford N. G., Geig enberger P., 2003. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J. 35, 490-500.
  • Trevanion S. J., 2002. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate. Planta 215, 653-665.
  • Tymowska-Lalanne Z., Kreis M., 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207, 259-265.
  • Wasaki J., Yonetani R., Kuroda S., Shinano T., Yazaki J., Fujii F., Shimbo K., Yamamoto K., Sakata K., Sasaki T., Kishimoto N., Kikuchi S., Yamagi shi M., Osaki M., 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515-1523.
  • Wiese A., Elzinga N., Wobbes B., Smeekens S., 2004. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16, 1717-1729.
  • Winter H., Huber S. C., 2000. Regulation of sucrose metabolism in higher plants. Localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 19, 31-67.
  • Yoshid a K. T., Fujiwara T., Naito S., 2002. The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol. Plant. 114, 581-587.
  • Zrenner R., Willmitzer L., Sonnewald U., 1993. Analysis of the expression of potato uridinediphosphate- glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 190, 247-252

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv55p229kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.