Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 2-3 | 209-215
Article title

Poliaminy i ich udział w reakcji roślin na warunki stresowe środowiska

Title variants
Polyamines and their involvement in plants reaction to environmental stress conditions
Languages of publication
Polyamines: spermidine, spermine as well as their diamine precursor putrescine, are small aliphatic amines ubiquitous in all plant cells. These compounds are regarded as a new class of growth substances. Biological functions of polyamines are attributed to their polycationic character at a physiological pH. Due to the presence of positively charged groups, they are able to bind strongly negatively charged cellular components such as nucleic acids, proteins and phospholipids. Interaction with membrane phospholipids can stabilize membranes under conditions of stress. These compounds can directly or indirectly act as free radical scavengers (ROS). Spermine, which has four amino groups, is a more effective scavenger than triamine spermidine and diamine putrescine, suggesting the involvement of amino groups in ROS scavenging.
Physical description
  • Katedra Fizjologii Roślin Akademia Rolnicza im. A. Cieszkowskiego, Wołyńska 35, 60-637 Poznań, Polska
  • Allen R. D., 1995. Dissection of oxidative stress toleramce using transgenic plants. Plant Physiol. 107, 1049-1054.
  • Aziz A., Martin-Tanguy J., Larher F., 1998. Stressinduced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaves discs treated with sodium chloride. Physiol. Plant. 104, 195-202.
  • Bagni N., Torrigiani P., 1992. Polyamines: A new class of growth substances. [W:] Progress in Plant Growth Regulation.. Karss en C. M., Van Loon L. C., Vreughenhil D. (red.). Kulver Academic Publishers, Dordrecht, 264-275.
  • Besford R. T., Richarson J. L., Campos A. F., Tiburcio A. F., 1993. Effect of polyamines in stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta 189, 201-206.
  • Borell A., Besford R. T., Altabell A., Masgrau C., Tiburcio A. F., 1996. Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves. Physiol. Plant. 98, 105-110.
  • Bors N., Langebarteles C., Michel C., Sanderman J. H., 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28, 1589-1595.
  • Bouchereau A., Aziz A., Larher F., Martin-Tanguy J., 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140, 103-125.
  • Bratt on D. L., 1994. Polyamine inhibition of transbilayer movements of plasma membrane phospholipids in the erythrocyte ghost. J. Biol. Chem. 269, 22517-22523.
  • Chattopadhayay M. K., Tiwari B. S., Chatt opadhayay G., Bose A., Sengupta D. N., Ghosh B., 2002. Protective role of exogenous polyamines on salinity- stressed rice (Oriza sativa) plants. Physiol. Plant. 116, 192-199.
  • Cohen S. S., 1998. A guide to the polyamine metabolism. Oxford University Press, New York, Oxford. Erdei L., Szegletes Z., Barabas K., Pestenacz A., 1996. Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J. Plant Physiol. 147, 599-603.
  • Evans P. T., Malmberg R. L., 1989. Do plyamines have roles in plants development? Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 235-269.
  • Flores H. E., Filner P., 1985. Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. Plant Growth Regul. 3, 277-291.
  • Flores H. E., Galston A. W., 1984a. Osmotic stressinduced polyamine accumulation in cereal leaves. I. Physiological parameters of the response. Plant Physiol. 75, 102-109.
  • Flores H. E., Galston A. W., 1984b. Osmotic stressinduced polyamine accumulation in cereal leaves. II. Relation to amino acid pools. Plant Physiol. 75, 110-113.
  • Flores H. E., 1991. Changes in polyamine metabolism in response to abiotic stress. [W:] The Biochemistry and Physiology of Polyamines in Plants. Slocum R., Flores H. E. (red.). CEC Press, Boca Raton, FL, 214-225.
  • Foyer C. H., Noctor G., 2005. Oxidant and antioxidant signaling in plants: re-evaluaion of the concept of oxidative stress in physiological context. Plant Cell Environ. 28, 1056-1071.
  • Galston A. W., Kaur-Sawhney R., 1995. Polyamines as endogenous growth regulators. [W:] Plant hormones: Physiology, Biochemistry and Molecular Biology. Davies P. J (red.). Kulver Academic Publishers, Dordrecht, 158-178.
  • Heagle A. S., 1989. Ozone and crop yield. Annu. Rev. Phytopathol. 27, 397-412.
  • Kakk ar R. K., Sawhney V. K., 2002. Polyamine research in plants - a changing perspective. Physiol. Plant. 116, 281-292.
  • Königshofer H., Lechner S., 2002. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress. Plant Physiol. Biochem. 40, 51-59.
  • Kramer G. F., Wang C. Y., 1989. Correlation of reduced chilling injury with increased spermidine and spermine levels in zucchini squash. Physiol. Plant. 76, 479-482.
  • Kramer G. F., Wang C. Y., 1990. Effects of chilling and temperature preconditioning on the activity of polyamine biosynthetic enzymes in zucchini squash. J. Plant Physiol. 136, 115-122.
  • Krishnamurthy R., Bhagwat K. A., 1984. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 91, 500-504.
  • Kubiś J., 2001. Polyamines and „scavenging system”: influence of exogenous spermidine on Halliwell- Asada pathway enzyme activity in barley leaves under water deficit. Acta Physiol. Plant. 23, 335-341.
  • Kubiś J., 2003. Polyamines and 'scavenging system': influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamines level in barley leaves under water deficit. Acta Physiol. Plant. 25, 337-343.
  • Kubiś J., 2005. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol. Plant. 27, 289-295.
  • Lee T. M., Lur H. s., Chu C., 1997. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. 2. Modulation of free polyamine level. Plant Sci. 126, 1-10.
  • Lester G. E., 2000. Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci. 160, 105-112.
  • Masgrau C., Altabella T., Farras R., Flores P., Thompson A. J., Besford R. T., Tiburcio A. F., 1997. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J. 11, 465-473.
  • Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancoc J., 2002. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 53, 1237-1247.
  • Ormrod D. P., Beckerson D. W., 1986. Polyamines as antiozonants in tomato. Hort. Sci. 21, 1070-1071.
  • Racz I., Kovacs M., Lasztity D., Veisz O., Szalai G., Paldi E., 1996. Effects of short-term and long term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. Plant Physiol. 148, 368-373
  • Rastogi R., Davies P. J., 1991. Effects of light and plant growth regulators on polyamine metabolism in higher plants. [W:] Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton, FL, 187-199.
  • Richards F. J., Coleman E. G., 1952. Occurrence of putrescine in potassium deficienct barley. Nature 170, 460-461.
  • Rowland-Bamford A. J., Barland A. M., Lea P. J., Mansfield T. A., 1989. The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. Environ. Pollut. 61, 93-99.
  • Shen W., Nada K., Tachibana S., 2000. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124, 431-439.
  • Sińska I., 1986. Poliaminy jako regulatory wzrostu i rozwoju roślin. Wiad. Bot. 9-24.
  • Santa-Cruz A., Acosta M., Pérez-Alfocea F., Bolarin M. C., 1997. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol. Plant. 101, 341-346.
  • Slocum R. D., Furey M. J., 1991. Electron-microscopic cytochemical localization of diamine and polyamine oxidases in pea and maize tissues. Planta 183, 443-450.
  • Smirnoff N., 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 27-58.
  • Smith T. A., 1985. The di and polyamine oxidaseses of higher plants. Biochem. Soc. Trans. 13, 319-322.
  • Tiburcio A. F., Kaur-Sawhney R., Galst on A. W., 1990 Polyamine metabolism of plant. [W:] The Biochemistry of Plants. Miflin B. J., Lea P. J. (red.). Academic Press, New York, 283-325.
  • Tiburcio A. F., Besford R. T., Borrell A., Mace M., 1995. Metabolism and function of polyamines during osmotically iduced senescence in oat leaves and protoplast. [W:] Amino Acids and Their Derivatives in Higher plants. Wallsgrove R. M. (red.). Cambridge University Press, Cambridge, UK, 205-225
  • Tiburcio A. F., Altabella T., Borrell A., Masgrau C., 1997. Polyamine metabolism and its regulation. Physiol. Plant. 100, 664-674.
  • Turner L. B., Stewart G. R., 1986. The effect of water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 175, 170-177.
  • Turner L. B., Stewart G. R., 1988. Factors affecting polyamine accumulation in barley (Hordeum vulgare L.) leaf sections during osmotic stress. J. Exp. Bot. 200, 311-316.
  • Vranowá E., Inzé D., Vanbreusegem F., 2002. Signal transduction during oxidative stress. J. Exp. Bot. 372, 1227-1236.
  • Wats on M. B., Malmberg R. L., 1996. Regulation of Arabidopsis thaliana (L.) Heyenh arginine decarboxylase by potassium deficiency stress. Plant Physiol. 111, 1077-1083.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.