PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2006 | 55 | 2-3 | 197-207
Article title

Jak przetrwać w skrajnie trudnych warunkach? Adaptacje ochotek

Content
Title variants
EN
How to survive in extreme environments? Adaptations of chironomids
Languages of publication
PL EN
Abstracts
EN
Chironomidae (Diptera) live in almost every conceivable freshwater environment but there are also species living in moist soil or vegetation and others that are truly terrestrial. Some of chironomid species are inhabitants of ephemeral water-bodies such as temporary rain-pools, phytotelmata (small aquatic habitats associated with living plants, including water- filled tree-holes), freshly filled ponds or soil layers; all these environments seasonally dry out. Chironomids utilize these habitats either by physiological and behavioural adaptations (in situ resistance includes desiccation resistance, often combined with cocoon building and larval migration into deeper, wetter layers of mud, soil or other porous material) or by repeated recolonization of temporarily suitable habitats. The second kind of adaptations concerns the local populations that are able to recolonize any other available habitat. A comparison of these two kinds of chironomid strategies (in situ resistance versus recolonization) leads to the conclusion that species that use the recolonization strategy tend to be better at migration and show higher fertility and shorter development time. Some chironomid species live in arctic areas and show a wide range of adaptations to their extreme severity and seasonality. Chironomids have developed efficient strategies that enable them to adapt physiologically well to low temperatures. These are: morphological (melanism, reduction in size and wings, hairiness), behavioural (habitat selection and cocoon building), ecological (extension of the development time to several years by quiescence or diapause and reduction of the number of generations per year), physiological and biochemical adaptations. The last ones, called cold hardiness, include freezing tolerance (hibernation) and freezing avoidance (supercooling). Both these mechanisms may be accompanied by diapause. Imagines of Chironomidae are also active in winter in the temperate zone when the temperatures range between -1 to 5°C. Adults appear on the snow surface when temperatures are favourable for copulation or for migration, which when it is colder they remain below the snow, in the subnivean space.
Keywords
Journal
Year
Volume
55
Issue
2-3
Pages
197-207
Physical description
Dates
published
2006
Contributors
  • Katedra Ekologii i Zoologii Kręgowców Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
References
  • Armitage P. D., Cranston P. S., Pinder L. C. V. (red.), 1995. The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras.
  • BLOCK W., 1990. Survival strategies in polar terrestrial arthropods. Biol. J. Linn. Soc. 14, 29-38.
  • Britt ain J .E., 1975. Life history strategies in Ephemeroptera and Plecoptera. [W:] Mayflies and stoneflies. Cambell I. C. (red.). Kluwer Academic Publishers, 1-12.
  • Butl er M. G., 1982. Production dynamics of some arctic Chironomus larvae. Limnol. Oceanogr. 27, 728-737.
  • Danks H. V., 1971. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. Can. Ent. 103, 589-604.
  • Danks H. V., 1992. Long life cycles in insects. Canad. Ent. 124, 167-187.
  • Danks H. V., 1996. The wider immigration of studies on insect cold-hardiness. Eur. J. Entomol. 93, 383-403.
  • Danks H. V., 1999. Life cycles in polar arthropods - flexible or programmed? Eur. J. Entomol. 96,
  • 83-102.
  • Danks H. V., 2004a. Seasonal adaptations in arctic insects. Integr. Comp. Biol. 44, 85-94.
  • Danks H. V., 2004b. The role of insect cocoons in cold condidions. Eur. J. Entomol. 101, 433-437.
  • Danks H. V., Oliver D. R., 1972. Diel periodicities of emergence of some high arctic Chironomidae (Diptera). Canad. Ent. 104, 903-906.
  • Danks H. V., Kukal O., Ring R. A., 1994. Insect coldhardiness: insights from the Arctic. Arctic 47, 391-404.
  • Delett re Y. R., 1988. Chironomid wing length, dispersal ability and habitat predictability. Holarct. Ecol. 11, 166-170.
  • Downes J. A., 1969. The swarming and mating flight of Diptera. Ann. Rev. Entomol. 14, 2712-298.
  • Frouz J., Mateňa J., Ali A. 2003. Survival strategies of chironomids (Diptera: Chironomidae) living in temporary habitats: a review. Eur. J. Entomol. 100, 459-465.
  • Inrons J. G., Mill er L. K., Oswood M. K., 1993. Ecological adaptations of aquatic macroinvertebrates to overwinting in interior Alaska (U.S.A.) subarctic streams. Can. J. Zool. 71, 98-108.
  • Kitching R. L., 1972. Population studies of the immature stages of the tree hole midges Metriocnemus martini Thienemann (Diptera: Chironomidae). J. Anim. Ecol. 41, 53-61.
  • Koshima S., 1984. A novel cold-tolerant insect found in Himalayan glacier. Nature 310, 25-227.
  • Kownacki A., 1985. Effect of drought on the invertebrate communities of high mountain streams. Verh. Int. Ver. Limnol. 22, 2069-2072.
  • Lencioni V., 2004. Survival strategies of freshwater insects in cold environments. J. Limnol. 63, 45-55.
  • Lill ehamm er A., 1987. Diapause and quiescence in eggs of Systellognatha stonefly species (Plecoptera) occurring in alpine areas of Norway. Annls. Limnol. 23, 179-184.
  • Mateňa J., Frouz J., 2000. Distribution and ecology of Chironomus Meigen in the Czech Republic (Diptera: Chironomidae). [W:] Late 20th Century Research on Chironomidae: an Anthology from 13th International Symposium on Chironomidae. Hoff richter O. (red.). Shaker Verlag, Aachen, 415-423.
  • McLachlan A. J., 1983. Life-history tactics of rainpool dwellers. J. Anim. Ecol. 52, 545-561.
  • McLachlan A. J., 1988. Refugia and habitat partitioning among midges (Diptera: Chironomidae) in rain pools. Ecol. Entomol. 13, 185-193.
  • McLachlan A. J., Ladle R., 2001. Life in puddle: behavioural and life-cycle adaptations in the Diptera of tropical rain pools. Biol. Rev. 76, 377-388.
  • Nolt e U., 1995. From egg to imago in less than seven days: Apedilum elachistius (Chironomidae).[W:] Chironomids: From genes to ecosystems. Cranston P. (red.). CSIRO Publications, Melbourne, 177-184.
  • Oliver D. R.1968. Adaptations of arctic Chironomidae. Ann. Zool. Fenn. 5, 111-118.
  • Pinder L.C.V., 1995. The habitats of chironomid larvae. [W:] The Chironomidae. The biology and ecology of non-biting midges. Armitage P., Cranston P. S., Pinder L. C. V. (red.). Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 107-135.
  • Ring R., 1982. Freezing - tolerant insects with low
  • supercooling points. Comp. Biochem. Physiol. 73A, 605-612.
  • Soszyńska A., 2004. The influence of environmental factors on the supranivean activity of flies (Diptera) in Central Poland. Eur. J. Entomol. 101, 481-489.
  • Soszyńska A., 2005. Naśnieżne muchówki (Diptera) i wojsiłki (Mecoptera) Wzniesień Łódzkich. Rozprawa Doktorska, Biblioteka UŁ.
  • Stevens M. M., Warren G. N., Braysher B. D., 2003. Oviposition response of Chironomus tepperi to nitrogenous compounds and bioextracts in twochoice laboratory tests. J. Chem. Ecol. 29, 911-920.
  • Ślusarczyk M., 1998. Diapauza jako strategia przetrwania. Wiad. ekol. 44, 279-303.
  • Thienemann A., 1954. Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20, 1-834.
  • Watanabe M., Kikawada T., Okuda T., 2003. Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae Polypedilum vanderplanki. J. Exp. Biol. 206, 2281-2286.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv55p197kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.