Preferences help
enabled [disable] Abstract
Number of results
2006 | 55 | 2-3 | 165-176
Article title

Wpływ barier genetycznych i środowiskowych oraz czynników historycznych na przepływ genów i strukturę populacji u zwierząt

Title variants
Historical events, genetic and environmental barriers - their impact on gene flow and population structure in animals
Languages of publication
In many species genetic distances increase with geographic distances, resulting in the “isolation by distance” (IBD) pattern. However, more complex patterns usually are observed in heterogeneous habitats. Geographic obstacles limit gene flow in a discontinuous way and might confound a simple IBD relationship. Moreover, current population structure is not only determined by present-day evolutionary processes but also shaped by population history. Barriers to gene flow lead to differences in gene pool composition among populations, so that molecular population genetics methods should allow these barriers to be detected. It is also possible to identify cryptic boundaries, which may represent secondary contacts among previously isolated populations. Landscape genetics approach that combines molecular population genetics and landscape ecology aims to detect such genetic discontinuities and to correlate them with environmental features. In this paper, the effects of genetic and environmental factors that affect population genetic structure and population history, are explored with a focus on the following examples: (1) the common vole populations in heterogeneous habitats of the Biebrza valley in NE Poland; (2) red deer populations in France that experienced isolation and translocations; (3) different chromosome races of the common shrew in Poland forming hybrid zones and (4) two sympatric subspecies of the chequered skipper in the Białowieża Primeval Forest, NE Poland. Implications of such approaches for evolutionary biology, ecology and conservation biology are discussed in the context of most recent achievements in the field.
Physical description
  • Instytut Biologii Uniwersytet w Białymstoku, Świerkowa 20B, 15-950 Białystok, Polska
  • Aars J., Dallas J. F., Piertney S. B., Marshall F., Gow J. L., Telfer S., Lamb in X., 2006. Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchyhabitats. Mol. Ecol. 15, 1455-1466.
  • Avise J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, MA.
  • Basset P., 2005. Chromosomal rearrangements and genetic structure in the shrew of the Sorex araneus group. Rozprawa doktorska, Uniwersytet w Lozannie, Lozanna.
  • Basset P., Balloux F., Perrin N., 2001. Testing demographic models of effective population size. Proc. R. Soc. Lond. B Biol. Sci. 268, 311-317.
  • Basset P., Yannic G., Yang F., O’Brien P. C. M., Graphodatsky A. S., Ferguson-Smith M. A., Balmus G., Volobouev V. T., Hausser J., 2006a. Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromos. Res. 14, 253-262.
  • Basset P., Yannic G., Hausser J., 2006b. Genetic and karyotypic structure in the shrews of the Sorex araneus group: are they independent? Mol. Ecol. 15, 1577-1587.
  • Beaumont M. A., 2005. Adaptation and speciation: what can Fst tell us? TREE 20, 435-440.
  • Borkowska A., Ratkiewicz M., 2004. Markery molekularne — narzędzia w badaniu dyspersji osobników różnej płci. Wiad. Ekol. 50, 3-17.
  • Boyce C. C. K., Boyce J. L., 1988. Population biology of Microtus arvalis. I. Lifetime reproductive success of solitary and grouped breeding females. J Anim. Ecol. 57, 711-722.
  • Brünner H., Lugon-Moulin N., Balloux F., Fumagalli L., Hausser J., 2002. A taxonomical revaluation of the chromosome race Valais of the common shrew, Sorex araneus (Insectivora: Soricidae), from multiple, independent characters. Acta Theriol. 47, 245-275.
  • Coulon A., Guillot G., Cosson J.-F., Angibault J. M. A., Aulagnier S., Cargnelutti B., Galan M., Hewison A. J. M., 2006. Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol. Ecol. 15, 1669-1679.
  • Emelianov I., Marec F., Mallet, J., 2003. Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proc. R. Soc. Lond. B 271, 97-105.
  • Fedyk S., Chętnicki W., Banaszek A., 1991. Genetic differentiation of Polish populations of Sorex
  • araneus L. III. Interchromosomal recombination in a hybrid zone. Evolution 45, 1384-1392.
  • Fedyk S., Banaszek A., Chętnicki W., Cichomska A., Szałaj K. A., 2000. Reassessment of the range of the Drnholec race: studies on meiosis in Sorex araneus hybrids. Acta Theriol. 45 (Suppl. 1), 59-67.
  • Gompert Z., Nice C. C., Fodryce J. A., Forister M. L., Shapiro A. M., 2006. Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol. Ecol. 15, 1759-1768.
  • Hamilton G., Currat M., Ray N., Heckel G., Beaumont M., Excoff ier L., 2005. Bayesian estimation of recent migration rates after a spatial expansion. Genetics 170, 409-417.
  • Hartl G. B., Zachos F. E., Nadlinger K., Ratkiewicz M., Klein F., Lang. G., 2005. Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mamm. Biol. 70, 23-34.
  • Haynes S., Jaarola M., Searle J. B., 2003. Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago. Mol. Ecol. 12, 951-956.
  • Hewitt G. M., 1999. Post-glacial re-colonization of European biota. Biol J Linn Soc. 68, 87-112.
  • Hutchison D. W., Templeton A. R., 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53, 1898-1914.
  • Jacobs J., 2003. The response of small mammal populations to flooding. Mamm. Biol. 68, 102-111.
  • Jacobs J., Hempel N., 2003. Effects of farming practices on spatial behaviour of common voles. J.
  • Ethol. 21, 45-50.
  • Jadwiszczak K., Ratkiewicz M., Banaszek A., 2006. Analysis of molecular differentiation in a hybrid zone between chromosomally distinct races of the common shrew, Sorex araneus (Insectivora: Soricidae) suggests their common ancestry. Biol. J. Linn Soc. (w druku)
  • Jaroszewicz B., 2000. Zagadnienie odrębności taksonomicznej Carterocephalus palaemon tolli Krzywicki, 1967 w Puszczy Białowieskiej. Rozprawa doktorska, Uniwersytet im. Mikołaja Kopernika w Toruniu, Toruń.
  • Krzywicki M., 1967. Fauna Papilionoidea i Hesperioidea (Lepidoptera) Puszczy Białowieskiej. Annales zool. 25, 1-213.
  • Lugon-Moulin N., Hausser J., 2002. Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (Sorex araneus). Mol. Ecol. 11, 785-794.
  • Luikart G., England, P. R., Tallmon, D., Jordan S., Taberlet P., 2003. The power and the promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981-994.
  • Manel S., Schwartz M. K., Luikart G., Taberlet P., 2003. Landscape genetics: combining landscape ecology and population genetics. TREE 18, 189-197.
  • Miller M. P., Bellinger R., Forsman E. D., Haig S. M., 2006. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Mol. Ecol. 15, 145-159.
  • Mitchell-Jones A. J., Amori G., Bogdanowicz W., 1999. The Atlas of European Mammals. Poyser, London.
  • Navarro A., Barton N. H., 2003b. Chromosomal speciation and molecular divergence - Accelerated evolution in rearranged chromosomes. Science 300, 321-324.
  • Piertney S. B., MacColl A. D., Bacon P. J., Dallas J. F., 1998. Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Mol Ecol. 7, 1645-54.
  • Pritchard J. K., Stephens M., Donnelly P., 2000. Inferences of population structure using multilocus
  • genotype data. Genetics 155, 945-959.
  • Ratkiewicz M., 2006. Od genetyki do genomiki populacji - nowe perspektywy badań w ekologii i biologii ewolucyjnej. Kosmos 55, 129-136.
  • Ratkiewicz M., Supruniuk J., Fedyk S., Banaszek A., Chętnicki W., Szałaj K., 2000. Genetic differentiation and gene flow between chromosome races Drnholec and Łęgucki Młyn of the common shrew (Sorex araneus) in northern Poland. Acta Theriol. 45 (Suppl. 1), 79-91.
  • Ratkiewicz M., Fedyk S., Banaszek A., Chętnicki W., Szałaj K. A, Gielly L., Taberlet P., 2002., The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity 88, 235-242.
  • Ratkiewicz M, Banaszek A, Jadwiszczak K, Chętnicki W, Fedyk S., 2003. Genetic diversity, stability of population structure and barriers to gene flow in the hybrid zone between two Sorex araneus chromosome races. Mammalia 67, 275-284.
  • Ratkiewicz M., Jaroszewicz B., 2006. Allopatric origins of sympatric forms: the skippers Carterocephalus palaemon palaemon, C. p. tolli and C. silvicolus. Ann. Zool. Fenn. 43, 285-294.
  • Riley S. P. D., Pollinger J. P., Sauvajot R. M., York E. C., Bromley C., Fuller T. K., Wayne R. K., 2006. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733-1741.
  • Rogers A., 1995. Genetic evidence for a Pleistocene population explosion. Evolution, 49, 608-615.
  • Searle J. B, Wójcik J. M., 1998. Chromosomal evolution: the case of Sorex araneus. [W:] Evolution of shrews. Wójcik J. M., Wolsan M. (red.). Zakład Badania Saków, PAN, Białowieża, 219-268.
  • Slatkin M., 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47, 264-279.
  • Szałaj K. A, Fedyk S., Banaszek A., Chętnicki W., Ratkiewicz M., 1996. A hybrid zone between two chromosome races of the common shrew, Sorex araneus L., in eastern Poland: preliminary results. Hereditas 125, 169-176.
  • Wilding C., S., Butlin R., K., Grahame J., 2001. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol. 14, 611-619.
  • Wójcik J. M. 1993. Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriol. 38, 315-338.
  • Wójcik J. M., Ratkiewicz M., Searle J. B., 2002. Evolution of the common shrew: cytological and molecular aspects. Acta Theriol. 47, 139-167.
  • Wright S., 1977. Evolution and the Genetics of Populations. Chicago Press, Chicago.
  • Young A. G., Clarke G. M., 2000. Genetics, Demography and Variability of Fragmented Populations. Cambridge University Press, Cambridge
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.