PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2005 | 54 | 4 | 391-400
Article title

Czy można usprawnić pobieranie fosforanów przez rośliny?

Authors
Content
Title variants
EN
Can the uptake of phosphates by plants be improved?
Languages of publication
PL EN
Abstracts
EN
Phosphorus is an important nutrient but usually it is at low availability in the soil - thus, it can limit plant growth and agricultural production. Plants have evolved various responses to adapt to low phosphorus nutrition - which is shortly summarized in this review. for example, roots secrete organic acids and different enzymes to rhizosphere, or can induce the transport system to improve the release (from the soil) and uptake of inorganic phosphate (Pi). Plants might control Pi nutrition by induction of mycorrhizae or by developing specific root structures - proteoid roots. attempts to generate plants which may more efficiently acquire Pi from the soil have recently been made by several scientific groups. the usefulness of such transgenic plants, with improved Pi uptake and enhanced Pi mobilization, and possible application of these plants in agriculture are discussed.
Keywords
Journal
Year
Volume
54
Issue
4
Pages
391-400
Physical description
Dates
published
2005
References
  • Abel S., Nürnberger T., Ahnert V., Krause G.-J., Glund K., 2000. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Phy siol. 122, 543–552.
  • Abel S., Ticconi C. A., Delatorre C. A., 2002. Phosphate sensing in higher plants. Physiol Plant. 115, 1–8.
  • Bates T. R., Lynch J. P., 2000. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acqusition. Am. J. Bot. 87, 964–970.
  • Brinch-Pedersen H., Sorensen L. D., Holm P. B., 2002. Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7, 118–125.
  • Ciereszko I., 2000. Wzrost i metabolizm roślin w warunkach deficytu fosforu. Kosmos 49, 179–189.
  • Ciereszko I. 2003. Molekularne podstawy odpowiedzi roślin na niedobór fosforanu. Post. Biol. Kom. 30, 647–665.
  • Ciereszko I., Rychter A. M., 1995. Zmiany metaboliczne w korzeniach wywołane deficytem fosforu. Wiad. Bot. 39, 81–90.
  • Ciereszko I., Kleczkowski L. A., 2005. Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis. Acta Physiol. Plant. 27, 147–155.
  • Ciereszko I., Janonis A., Kociakowska M., 2002. Growth and metabolism of cucumber in phosphate-deficient conditions. J. Plant Nutr. 25, 1115–1127.
  • Coello P., 2002. Purification and characterization of secreted acid phosphatase in phosphorus-deficient Arabidopsis thaliana. Physiol. Plant. 116, 293–298.
  • Dakora F. D., Phillips D. A., 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245, 35–47. de la Fuente J. M., Ramirez-Rodriguez V., CabreraPonce J. L., Herrera-Estrella L., 1997. Alumi nium tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566– 1568.
  • Delhaize E., Hebb D. M., Ryan P. R., 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with ether enhanced citrate accumulation or efflux. Plant Physiol. 125, 2059–2067.
  • Fan M., Zhu J., Richards C., Brown K. M., Lynch J. P., 2003. Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506.
  • Franco-Zorrilla J. M., González E., Bustos R., Linhares F., Leyva A., Paz-Ares J., 2004. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293.
  • Gadkar V., David-Schwartz R., Kunik T., Kapulnik Y., 2001. Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol. 127, 1493–1499.
  • Grabowski J., 2004. Zasobność gleb województwa podlaskiego w fosfor na podstawie badań Stacji Chemiczno-Rolniczej Oddział w Białymstoku. Wiadomości Rolnicze 7–8, 19–20.
  • Greenwood D. J, Karpinets T. V., Stone D. A., 2001. Dynamic model for the effects of soil P and fertilizer P on crop growth, P uptake and soil P in arable cropping: model description. Ann. Bot. 88, 279–291.
  • Grotz N., Guerinot M. L., 2002. Limiting nutrients: an old problem with new solutions? Curr. Opin. Plant Biol. 5, 158–163.
  • Hammond J. P., Bennett M. J., Bowen H. C., Broadley M. R., Eastwood D. C., May S. T., Rahn C., Swarup R., Woolaway K. E., White P. J., 2003. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132, 578–596.
  • Hammond J. P., Broadley M. R., White P. J., 2004. Genetic responses to phosphorus deficiency. Ann. Bot. 94, 323–332.
  • Haran S., Logendra S., Seskar M., Bratanova M., Raskin I., 2000. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol. 124, 615–626.
  • Hell R., Hillebrand H., 2001. Plant concepts for mineral acquisition and allocation. Trends Plant Sci. 12, 161–168.
  • Herrera-Estrella L., 1999. Transgenic plants for tropical regions: Some considerations about their development and their transfer to the small farmer. Proc. Natl. Acad. Sci. USA 96, 5978–5981.
  • Hinsinger P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173–195.
  • Hirsch R. E., Sussman M. R., 1999. Improving nutrient capture from soil by the genetic manipulation of crop plants. Trends Biotech. 17, 356–361.
  • Juszczuk I. M., Wiktorowska A., Malusá E., Rychter A. M., 2005. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267,41 – 49.
  • Karandashov V., Nagy R., Wegmüller S., Amrhein N., Bucher M., 2004. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 101, 6285–6290.
  • Karandashov V., Bucher M., 2005. Symbiotic mycorrhizas.Trends Plant Sci. 10, 22–29.
  • Koyama H., Takita E., Kawamura A., Hara T., Shibata D., 1999. Overexpression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al- phosphate medium. Plant Cell Physiol. 40, 482–488.
  • Koyama H., Kawamura A., Kihara T., Hara T., Takita E., Shibata D., 2000. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 41, 1030–1037.
  • Kunze R., Frommer W. B., Flügge U.-I., 2002. Metabolic engineering of plants: the role of membrane transport. Metab. Engineer. 4, 57–66.
  • Lambers H., Cramer M. D., Shane M. W., Wouterlood M., Poot P., Veneklaas E. V., 2003. Introduction. Structure and functioning of cluster roots and plant responses to phosphate deficiency. Plant Soil 248, 9–19.
  • Li M., Osaki M., Rao I. M., Tadano T., 1997. Secretion of phytase from the roots of several plants species under phosphorus-deficient conditions. Plant Soil 195, 161–169.
  • Linkohr B. I., Williamson L. C., Fitter A. H., Leyser H. M. O., 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751–760.
  • Lynch J. P., Brown K. M., 1998. Regulation of root architecture by phosphorus availability. [W:] Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes. Lynch J. P., Deikmann J. (red.) Am. Soc. Plant Physiol. Rockville, Maryland USA, 148–156.
  • López-Bucio J., de la Vega O. M., Guevara-Garcia A., Herrera-Estrella L., 2000a. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotech. 18, 450–453.
  • López-Bucio J., Nieto-Jacobo M. F., Ramirez-Rodriguez V., Herrera-Estrella L., 2000b. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 160, 1–13.
  • Ma Z., Baskin T. I., Brown K. M. Lynch J. P., 2003. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131, 1381–1390.
  • Marschner H., 1995. Mineral nutrition of higher plants. Academic Press, London
  • Mengel K., Kirkby E. A., 1983. Podstawy żywienia roślin. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 308–324.
  • Mimura T., 1999. Regulation of phosphate transport and homeostasis in plant cells. Inter. Rev. Cytol. 191, 149–200.
  • Mitsukawa N., Okumura S., Shirano Y., Sato S., Kato T., Harashima S., Shibata D., 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad. Sci. USA 94, 7098–7102.
  • Mullaney E. J., Ullah A. H. J., 2003. The term phytase comprises several different classes of enzymes. Bioch. Bioph. Res. Com. 312, 179–184.
  • Narrang R. A., Bruene A., Altmann T., 2000. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiol. 124, 1786–1799.
  • Neumann G., Massonneau A., Martinoia E., Römheld V., 1999. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208, 373–382.
  • Neumann G., Martinoia E., 2002. Cluster roots — an underground adaptation for survival in extreme environments. Trends Plant Sci. 7, 162–167.
  • Ni J. J., Wu P., Senadhira D., Huang N., 1998. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor. Appl. Genet. 97, 1361–1369.
  • Olczak M., 1996. Kwaśne fosfatazy roślin wyższych. Wiad. Bot. 40, 39–51.
  • Poirier Y., Bucher M., 2002. Phosphate transport and homeostasis in Arabidopsis. In:The Arabidopsis Book. Am. Soc. Plant Biol., pp. 1–35.
  • Raboy V., 1998. The genetics of seed storage phosphorus pathways. [W:] Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes. Lynch J. P., Deikmann J. [red.] Am. Soc. Plant Physiol. Rockville, Maryland USA, 192–203.
  • Raghothama K. G., 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.
  • Raghothama K. G., 2000a. Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182–187.
  • Raghothama K. G., 2000b. Phosphorus acquisition; plant in the driver’s seat! Trends Plant Sci. 5, 412–413.
  • Raun W. R., Johnson G. V., Sembiring H., Lukina E. V., LaRuffa J. M., Thomas W. E., Phillips S. B., Solie J. B., Stone M. L., Whitney R. W., 1998. Indirect measures of plant nutrients. Commun. Soil Sci. Plant Anal. 29, 1571–1581.
  • Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., Amrhein N., Bucher M., 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–466.
  • Rausch C., Bucher M., 2002. Molecular mechanisms of phosphate transport in plants. Planta 216, 23–37.
  • Reńko J., 2004. Czy warto stosować nawożenie fosforowe. Wiadomości Rolnicze 10, 16–17.
  • Richardson A. E., Hadobas P. A., Hayes J. E., 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25, 641–649.
  • Rodriguez H., Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17, 319–339.
  • Rychter A. M., Rao I. M., 2005. Role of phosphorus in photosynthetic carbon metabolism. [W:] Handbook of Photosynthesis. Pessarakli M. (red.), 2nd edition, Marcel Dekker, Inc., New York, 123–148.
  • Schachtman D. P., Reid R. J., Ayling S. M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453
  • Shane M. W., De Vos M., De Roock S., Lambers H., 2003. Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ. 26, 265–273.
  • Shin H., Shin H.-S. Dewbre G. R., Harrison M. J., 2004. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629–642.
  • Smethurst P. J., 2000. Soil solution and other soil analyses as indicators of nutrient supply: a review. For. Ecol. Manage. 138, 397–411.
  • Smith F. W., Mudge S. R., Rae A. L., Glassop D., 2003. Phosphate transport in plants. Plant Soil 248, 71–83.
  • Tesfaye M., Temple S. J., Allan D. L., Vance C. P., Samac D. A., 2001. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol. 127, 1836–1844.
  • Tesfaye M., Dufault N. S., Dornbusch M. R., Allan D. L., Vance C. P., Samac D. A., 2003. Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem. 35, 1103–1113.
  • Thomas C., Sun Y., Naus K., Lloyd A., Roux S., 1999. Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol. 119, 543–552.
  • Ticconi C. A., Abel S., 2004. Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci. 9, 548–555.
  • Tomscha J., Dewald A., Lynch J. P., Guiltinan M., Deikman J., 1998. Constitutive phosphatase secretion mutants in Arabidopsis thaliana. [W:] Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes. Lynch J. P., Deikmann J. (red.) Am. Soc. Plant Physiol. Rockville, Maryland USA, Guiltinan M. J., 2004. Phosphatase under-producer mutants have altered phosphorus relations. Plant Physiol. 135, 334–345. Rola mikoryzy w bioremediacji terenów zanieczyszczonych. Kosmos 51, 185–194.
  • Vance C. P., 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397.
  • Vance C. P., Uhde-Stone C., Allan D. L., 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447. Introduction of polyphosphate as a novel phosphate pool in the chloroplast of transgenic potato plants modifies carbohydrate partitioning. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Phy
  • Wasaki J., Yonetani R., Kuroda S., Shinano T., Yazaki J., Fujii F., Shimbo K., Yamamoto K., Sakata K., Sasaki T., Kishimoto N., Kikuchi S., Yamagishi M., Osaki M., 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523.
  • Watt M., Evans J. R., 1999. Proteoid roots. Physiology and development. Plant Physiol. 121, 317–323.
  • Wissuwa M., 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol. 133, 1947–1958.
  • Yan X., Lynch J. P., Beebe S. E., 1995a. Genetic variation for phosphorus efficiency of common bean in contrasting soil types: I. Vegetative response.
  • Yan X., Beebe S. E., Lynch J. P., 1995b. Genetic variation for phosphorus efficiency of common bean in contrasting soil types: II. Yield response. Crop
  • Yu B., Xu C., Benning C., 2002. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv54p391kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.