Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 4 | 381-389
Article title

Białka kompleksu ADF/kofilina: regulacja dynamiki filamentów aktynowych

Title variants
Proteins of the ADF/cofilin family: regulation of actin filaments dynamics
Languages of publication
Many cellular events are directly related to the cytoskeleton’s dynamics, which remain under control of the protein regulatory system. Proteins of the ADF/cofilin family have been shown to be active in depolymerizing F-actin, as well as severing actin filaments and creating free barbed ends. Their various functions are regulated, among others, by phosphorylation, pH, the state of the nucleotide bound profilin, gelsolin, tropomyosin, AIP1 and the Arp 2/3 complex. In addition, the ability of ADF/cofilin to bind to actin appears to be modified by phalloidin. It has also been emphasized that these key actin dynamics’ regulators are able to form intranuclear actin/cofilin rods and some of their activities are associated with apoptosis.
Physical description
  • Amano T., Kaji N., Ohashi K., Mizuno K., 2002. Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J. Biol. Chem. 277, 22093–22102.
  • Arai H., Atomi Y., 2003. Suppression of cofilin phosphorylation in insulin-stimulated ruffling membrane formation in KB cells. Cell Struct. Funct. 28, 41–48.
  • Ashworth S. L., Southgate E. L., Sandoval R. M., Meberg P. J., Bamburg J. R., Molitoris B. A., 2003. ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. Am. J. Physiol. Renal Physiol. 284, 852–862.
  • Bamburg J. R., 1999. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185–230.
  • Bernstein B. W., Bamburg J. R., 1982. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 2, 1–8.
  • Besson A., Assoian R. k., Roberts J. m., 2004. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors. Nat. Rev. Cancer. 4, 948–955.
  • Blanchoin L., Pollard T. D., 1998. Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin. J. Biol. Chem. 273, 25106–25111.
  • Blondin L., Sapountzi V., Maciver S. K., Renoult C., Benyamin Y., Roustan C., 2001. The second ADF/ cofilin actin-binding site exists in F-actin, the cofilin-G-actin complex, but not in G-actin. Eur. J. Biochem. 268, 6426–6434.
  • Blondin L., Sapountzi V., Maciver S. K., Lagarrigue E., Benyamin Y., Roustan C., 2002. A structural basis for the pH-dependence of cofilin. F-actin interactions. Eur. J. Biochem. 269, 4194–4201.
  • Bonet C., Ternent D., Maciver S. K., Mozo-Villarias A., 2000. Rapid formation and high diffusibility of actin-cofilin cofilaments at low pH. Eur. J. Biochem. 267, 3378–3384.
  • Bryce N. S., Schevzov G., Ferguson V., Percival J. M., Lin J. J., Matsumura F., Bamburg J. R., Jeffrey P. L., Hardeman E. C., Gunning P., Weinberger R. P., 2003. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14, 1002–1016.
  • Carlier M. F., Laurent V., Santolini J., Melki R., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D., 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322.
  • Chhabra D., Bao S., Dos Remedios C. G., 2002. The distribution of cofilin and DNase I in vivo. Cell Res. 12, 207–214.
  • Dawe H. R., Minamide L. S., Bamburg J. R., Cramer L. P., 2003. ADF/cofilin controls cell polarity during fibroblast migration. Curr. Biol. 13, 252– 257.
  • Desmarais V., Ichetovkin I., Condeelis J., HitchcockDeGregori S. E., 2002. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115, 4649–4660.
  • Desmarais V., Macaluso F., Condeelis J., Bailly M., 2004. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci. 117, 3499–3510.
  • Desmarais V., Ghosh M., Eddy R., Condeelis J., 2005. Cofilin takes the lead. J. Cell Sci. 118, 19–26. dos Remedios C. G., Chhabra D., Kekic M., Dedova I. V., Tsubakihara M., Berry D. A., Nosworthy N. J., 2003. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473.
  • Eibert S. M., Lee K. H., Pipkorn R., Sester U., Wabnitz G. H., Giese T., Meuer S. C., Samstag Y., 2004. Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc. Natl. Acad. Sci. USA 101, 1957– 1962.
  • Endo M., Ohashi K., Sasaki Y., Goshima Y., Niwa R., Uemura T., Mizuno K., 2003. Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin. J. Neurosci. 23, 2527– 2537.
  • Galkin V. E., Orlova A., Lukoyanova N., Wriggers W., Egelman E. H., 2001. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75–86.
  • Galkin V. E., Orlova A., Van loock M. S., Shvetsov A., Reisler E., Egelman E. H., 2003. ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments. J. Cell Biol. 163, 1057– 1066.
  • Ghosh M., Song X., Mouneimne G., Sidani M., Lawrence D. S., Condeelis J. S., 2004. Cofilin promotes actin depolymerization and defines the direction of cell motility. Science 304, 743–746.
  • Hotulainen P., Paunola E., Vartiainen M. K., Lappalainen P., 2005. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649–664.
  • Iida K., Matsumoto S., Yahara I., 1992. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 17, 39–46.
  • Kuhn T. B., Meberg P. J., Brown M. D., Bernstein B. W., Minamide L. S., Jensen J. R., Okada K., Soda E. A., Bamburg J. R., 2000. Regulating actin filament dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J. Neurobiol. 44,126–144.
  • Mabuchi I., 1983. An actin-depolymerizing protein (depactin) from starfish oocytes: properties and interaction with actin. J. Cell Biol. 97, 1612– 1621.
  • Maciver S. K., Weeds A. G., 1994. Actophorin preferentially binds monomeric ADP-actin over ATPbound actin: consequences for cell locomotion. FEBS Lett. 347, 251–256.
  • Maciver S. K., Pope B. J., Whytock S., Weeds A. G., 1998. The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba Actophorin. Eur. J. Biochem. 256, 388–397.
  • Matsuzaki F., Matsumoto S., Yahara I., Yonezawa N., Nishida E., Sakai H., 1988. Cloning and characterization of porcine brain cofilin cDNA. J. Biol. Chem. 263, 11564–11568.
  • McGough A., Pope B., Chiu W., Weeds A., 1997. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781.
  • Minamide L. S., Striegl A. M., Boyle J. A., Meberg P. J., Bamburg J. R., 2000. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat. Cell Biol. 2, 628–636.
  • Mizuno K., Okano I., Ohashi K., Nunoue K., Kuma K., Miyata T., Nakamura T., 1994. Identyfication of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9, 1605–1612.
  • Nagata-Ohashi K., Ohta Y., Goto K., Chiba S., Mori R., Nishita M., Ohashi K., Kousaka K., Iwamatsu A., Niwa R., Uemura T., Mizuno K., 2004. A pathway of neuregulin-induced activation of cofilinphosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465–471.
  • Nebl G., Meuer S. C., Samstag Y., 1996. Dephospho rylation of serine 3 regulates nuclear translocation of cofilin. J. Biol. Chem. 271, 26276–26280.
  • Nishida E., 1985. Oposite effects of cofilin and profilin from porcine brain on rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 24, 1160–1164.
  • Nishida E., Maekawa S., Muneyuki E., Sakai H., 1984. Action of 19K protein from porcine brain on actin polymerization: a new functional class of actin-binding proteins. J. Biochem. 95, 387–398.
  • Nishida E., Iida K., Yonezawa N., Koyasu S., Yahara I., Sakai H., 1987. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc. Natl. Acad. Sci. USA 84, 5262–5266.
  • Nishita M., Aizawa H., Mizuno K., 2002. Stromal cell-derived factor 1α activates LIM kinase 1 and induces cofilin phosphorylation for T-cell chemotaxis. Mol. Cell Biol. 22, 774–783.
  • Niwa R., Nagata-Ohashi K., Takeichi M., Mizuno K., Uemura T., 2002. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246.
  • Ohashi K., Nagata K., Maekawa M., Ishizaki T., Narumiya S., Mizuno K., 2000. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275, 3577–3582.
  • Ohta Y., Nishida E., Sakai H., Miyamoto E., 1989. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J. Biol. Chem. 264, 16143–16148.
  • Okano I., Hiraoka J., Otera H., Nunoue K., Ohashi K., Iwashita S., Hirai M., Mizuno K., 1995. Identyfication and charakteriztion of a novel family of serine/threonine kinases containing two Nterminal LIM motifs. J. Biol. Chem. 270, 31321– 31330.
  • Ono S., McGough A., Pope B. J., Tolbert V. T., Bui A., Pohl J., Benian G. M., Gernert K. M., Weeds A. G., 2001. The C-terminal tail of UNC-60B (actin depolymerizing factor/cofilin) is critical for maintaining its stable association with F-actin and is implicated in the second actin-binding site. J. Biol. Chem. 276, 5952–5958.
  • Ono S., Mohri K., Ono K., 2004. Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound actin filaments. J. Biol. Chem. 279, 14207–14212.
  • Ostrowski M., Grzanka A., Izdebska M., 2005. Rola aktyny w chorobie Alzheimera. Post. Hig. Med. Dośw. 59, 224–228.
  • Pendleton A., Pope B., Weeds A., Koffer A., 2003. Latrunculin B or ATP depletion induces cofilindependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394–14400.
  • Pfannstiel J., Cyrklaff M., Habermann A., Stoeva S., Griffiths G., Shoeman R., Faulstich H., 2001. Human cofilin forms oligomers exhibiting actin bundling acitvity. J. Biol. Chem. 276, 49476– 49484.
  • Pollard T. D., Blanchoin L., Mullins R. D., 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576.
  • Pollard T. D., Blanchoin L., Mullins R. D., 2001. Actin dynamics. J. Cell Sci. 114, 3. pritchard c. a., hayes l., wojnowski l., zimmer a., marais r. m., norman j. c., 2004. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol. Cell. Biol. 24, 5937–5952.
  • Renoult C., Ternent D., Maciver S. K., Fattoum A., Astier C., Benyamin Y., Roustan C., 1999. The identification of a second cofilin binding site on actin suggests a novel, intercalated arrangement of F-actin binding. J. Biol. Chem. 274, 28893–28899.
  • Ressad F., Didry D., Egile C., Pantaloni D., Carlier M. F., 1999. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and Arp2/3 complex. J. Biol. Chem. 274, 20970–20976.
  • Samstag Y., Eckerskorn Ch., Wesselborg S., Henning S., Wallich R., Meuer S. C., 1994. Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc. Natl. Acad. Sci. USA 91, 4494–4498.
  • Song Y., Hoang B.Q. Chang D.D., 2002. ROCK-II-induced membrane blebbing and chromatin condensation require actin cytoskeleton. Exp. Cell Res. 278, 45–52.
  • Sun H. Q., Wooten D. C., Janmey P. A., Yin H. L., 1994. The actin side-binding domain of gelsolin also caps actin filaments. Implications for actin filament severing. J. Biol. Chem. 269, 9473– 9479.
  • Svitkina T. M., Borisy G. G., 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendric organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026.
  • Takahashi H., Koshimizu U., Miyazaki J., Nakamura T., 2002. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIMkinase 2 gene. Dev. Biol. 241, 259–272.
  • Tomiyoshi G., Horita Y., Nishita M., Ohashi K., Mizuno K., 2004. Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing. Genes Cells 9, 591–600.
  • Toshima J., Toshima J.Y., Amano T., Yang N., Narumiya S., Mizuno K., 2001a. Cofilin phosphorylation by protein kinase testicular protein kinase1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131–1145.
  • Toshima J., Toshima J. Y., Tekeuchi K., Mori R., Mizuno K., 2001b. Cofilin phosphorylation and actin reorganization activites of testicular protein kinase 2 and its predominant expression in testicular sertoli cells. J. Biol. Chem. 276, 31449– 31458.
  • Van Troys M., Dewitte D., Verschelde J. L., Goethals M., Vandekerckhofe J., Ampe C., 1997. Analogous F-actin binding by cofilin and gelsolin segment 2 substantiates their structural relationship. J. Biol. Chem. 272, 32750–32758.
  • Vartiainen M. K., Mustonen T., Mattila P. K., Ojala P. J., Thesleff I., Partanen J., Lappalainen P., 2002. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13, 183–194.
  • Wada A., Fukuda M., Mishima M., Nishida E., 1998. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal proteins. EMBO J 17, 1635–1641.
  • Wiggan O., Bernstein B. W., Bamburg J. r., 2005. A phosphatase for cofilin to be HAD. Nat. Cell Biol. 7, 8–9.
  • Yamaguchi H., Lorenz M., Kempiak S., Sarmiento C., Coniglio S., Symons M., Segall J., Eddy R., Miki H., Takenawa T., Condeelis J., 2005. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452.
  • Yonezawa N., Nishida E., Maekawa S., Sakai H., 1988. Studies on the interaction between actin and cofilin purified by a new method. Biochem. J. 251, 121–127.
  • Zimmerle C.T., Frieden C., 1988. Effect of pH on the mechanism of actin polymerization. Biochemistry 27, 7766–7772.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.