Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 4 | 345-356
Article title

Nowe badania nad saponinami ujawniają ich liczne lecznicze właściwości

Title variants
New research on saponins shows their wide range of pharmacological activities
Languages of publication
Saponins (saponosides) belong to a group of secondary metabolites, widely distributed mainly, but not exclusively, among plants. They are reported to occur in over 500 species from over 90 families of both edible and nonedible plants. Chemically, saponins are glycosides consisting of a sugar moiety and non-sugar aglycone, called also sapogenin. Depending on the number of sugar chains attached to the aglycone, mono-, bi- and tridesmosides are distinguished. According to the structure of aglycone, saponins are classified into steroidal and triterpenoid. Common for all types of saponins are their surface-active properties and the ability to form a stable foam in water solutions. This property makes saponins applicable as components of household detergents and fire extinguishers. Saponins have a high ability to bind to cell membrane sterols, which is responsible at least in part for their biological activities. They reveal also strong haemolytic properties, which differ depending on the saponin type and its aglycone structure. Saponins exhibit a wide range of biological properties and are believed to be one of the key biologically active constituents of plant drugs used in folk, especially Far East medicine. Many of the most important saponins are present in the roots of ginseng (Panax ginseng), soybeans (Glycine max) and plants of Bupleurum genus. Saponins are also widely used in conventional medicine (i.e. expectorants, hypocholesterolemic drugs). Moreover many studies in vitro and in vivo exhibited their anti-inflammatory, antimutagenic, antiviral, antibacterial, antifungal, analgesic, and antitumour activities. The latter is the most promising because of its possible future therapeutical application, since many cancer cell lines are more vulnerable to saponins than normal cells. Its cytotoxicity in most cases is the result of apoptosis, nevertheless additional studies including determination of the inhibitory mechanisms of saponins should be addressed.
Physical description
  • Zakład Biologii Komórki, Wydział Biotechnologii Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Zakład Biologii Komórki, Wydział Biotechnologii Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Apers S., Baronikova. S., Sindambiwe J.-B., Witvrouw M., De Clercq E., Van Den Berghe D., Van Marck E., Vlietinck A. J., Pieters L., 2001. Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins from Maesa lanceolata: establishment of structure-activity relationships. Planta Med. 67, 528–532.
  • Arai J., Komatsu Y., Hirai Y., Shingu K., Ida Y., Yamamura H., Yamamoto T., Kuroiwa Y., Sasaki K., Taguchi S., 1997. Stimulative effects of saponin from kikyo-to, a Japanese herbal medicine, on pancreatic exocrine secretion of conscious rats. Planta Med. 63, 419–424.
  • Bader G., 1994. Pharmacology and biopharmaceutics of triterpenoid saponins. Pharmazie 49, 391–397.
  • Ball S., 2000. Naturalne substancje przeciwnowotworowe. Medyk, Warszawa, 181–182.
  • Baumann E., Stoya G., Völkner A., Richter W., Lemke C., Linss W., 2000. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem. 102, 21–35.
  • Berhow M. A., Wagner E. B., Vaughn S. F., Plewa M. J., 2000. Characterization and antimutagenic activity of soybean saponins. Mutation Res. 448, 11–22.
  • Bermejo P., Abad M. J., Diaz A. M., Fernandez L., Santos J. D., Sanchez S., Villaescusa L., Carrasco L., Irurzun A., 2002. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med. 68, 106–110.
  • Choi H. H., Jong H. S., Park J. H., Choi S., Lee J. W., Kim T. Y., Otsuki T., Namba M., Bang Y. J., 2003. A novel ginseng saponin metabolite induces apoptosis and down-regulates fibroblast growth factor receptor 3 in myeloma cells. Int. J. Oncol. 23, 1087–1093.
  • Cuellar M. J., Giner R. M., Recio M. C., Just M. J., Manez S., Cerda M., Hostettmann K., Rios J. L., 1997. Zanhasaponins A and B, antiphospholipase A2 saponins from an antiinflammatory extract of Zanha africana root bark. J. Nat. Prod. 60, 1158–1160.
  • Danloy S., Quetin-Leclercq J., Coucke P., De Pauwgillet M.-C., Elias R., Balansard G., Angenot L., Bassleer R., 1994. Effects of alpha-hederin, a saponin extracted from Hedera helix, on cells cultured in vitro. Planta Med. 60, 45–49.
  • Dey P. M., Harborne J. B., 1997. Methods in Plant Biochemistry. Academic Press, London, 436– 466.
  • Fei X.-F., Wang B.-X., Tashiro S., Li T.-J., Ma J.-S., Ikejima T., 2002. Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacol. Sin. 23, 315–322.
  • Haddad M., Laurens V., Lacaille-Dubois M.-A., 2004. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg. Med. Chem. 12, 4725–4734.
  • Hsu Y.-L., Kuo P.-L., Lin C.-C., 2004b. The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells. Life Sci. 75, 1231–1242.
  • Hsu Y.-L., Kuo P.-L., Weng T.-C., Yen M.-H., Chiang L.-C., Lin C.-C., 2004a. The antiproliferative activity of saponin-enriched fraction from Bupleurum kaoi is through Fas-dependent apoptotic pathway in human non-small cell lung cancer A549 cells. Biol. Pharm. Bull. 27, 1112–1115.
  • Kim H. Y., Yu R., Kim J. S., Kim Y. K., Sung M. K., 2004. Antiproliferative crude soy saponin extract modulates the expression of IκBɦ, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett. 210, 1–6.
  • Kim J. H., Hahm D. H., Yang D. C., Kim J. H., Lee H. J, Shim I., 2005. Effect of crude saponin of korean red ginseng on high-fat diet-induced obesity in the rat. J. Pharmacol. Sci. 97, 124–131.
  • Kohlmünzer S., 1993. Farmakognozja. Podręcznik dla studentów farmacji. PZWL, Warszawa, 324–352.
  • Kołodziejczak A., 2003. Naturalne związki organiczne. PWN, Warszawa, 488–489.
  • Lee S.-J., Sung J.-H., Lee S.-J., Moon C.-K., Lee B.-H., 1999. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett. 144, 39–43.
  • Li X. X., Davis B., Haridas V., Gutterman J. U., Colombini M., 2005. Proapoptotic triterpene electrophiles (avicins) form channels in membranes: cholesterol dependence. Biophys. J. - Bio FAST, as doi:10.1529/biophysj.104.049403.
  • Liu M.-J., Wang Z., Ju Y., Zhou J.-B., Wang Y., Wong R. N.-S., 2004. The mitotic-arresting and apoptosis-inducing effects of diosgenyl saponins on human leukemia cell lines. Biol. Pharm. Bull. 27, 1059–1065 .
  • Milgate J., Roberts D. C. K., 1995. The nutritional and biological significance of saponins. Nutr. Res. 15, 1223–1249.
  • Mimaki Y., Harada H., Sakuma C., Haraguchi M., Yui S., Kudo T., Yamazaki M., Sashida Y., 2003b. Enterolosaponins A and B, novel triterpene bisdesmosides from Enterolobium contortisiliquum, and evaluation for their macrophage-oriented cytotoxic activity. Bioorg. Med. Chem. Lett. 13, 623–627.
  • Mimaki Y., Kuroda M. Yokosuka A., Harada H., Fukushima M., Sashida Y., 2003a. Triterpenes and Triterpene Saponins from the Stems of Akebia trifoliata. Chem. Pharm. Bull. 51, 960–965.
  • Nakata H., Kikuchi Y., Tode T., Hirata J., Kita T., Ischu K., Kudoch K., Nagata I., Shinomiya N., 1998. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn. J. Cancer Res. 89, 733–740.
  • Navarro P., Giner R. M., Recio C., Máñez S., Cerdánicolás M., Ríos J.-L., 2001. In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium. Life Sci. 68, 1199–1206.
  • Nemmani K. v. S., Ramarao P., 2002. Ginseng total saponin potentiates acute U-50,488H-induced analgesia and inhibits tolerance to U-50,488H- induced analgesia in mice. Pharmacol. Biochem. Behav. 72, 1–6.
  • Norberg ., Hoa N.k., Liepinsh E., Phan D. V., Thuan N. D., Jörnvall H., Sillard R., stenson C. -G., 2004. A novel insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. J. Biol. Chem. 279, 41361–41367.
  • Oh Y.-J., Sung M.-K., 2001. Soybean saponins inhibit cell proliferation by suppression PKC activation and induce differentiation of HT-29 human colon adenocarcinoma cells. Nutr. Cancer 39, 132–138.
  • Oleszek W. A., 2002. Chromatographic determination of plant saponins. J. Chromatogr. A 967, 147–162.
  • Osbourn A. E., 2003. Saponins in cereals. Phytochemistry 62, 1–4.
  • Ota T., Maeda M., Odashima S., Ninomiya-Tsuji J., Tatsuka M., 1997. G1-phase-specific suppression of the CdK2 activity by ginsenoside Rh2 in cultured murine cells. Life Sci. 60, 39–44.
  • Papadopoulou K., Melton R. E., Legget M., Daniels M. J., Osbourn A., 1999. Compromised disease resistance in saponin-deficient palnts. Proc. Natl. Acad. Sci. USA 96, 12923–12928.
  • Schöpke T., Hiller K., 1990. Triterpenoid saponins. Pharmazie 45, 313–342.
  • Shao Y., Chin C.-K., Ho C.-T., Ma W., Garrison S. A. Huang M.-T., 1996. Anti-tumor activity of the crude saponins obtained from asparagus. Cancer Lett. 104, 31–36.
  • Shao Y., Ho C.-T., Chin C.-K., Rosen R. T., Hu B., Qin G.-W., 1997. Triterpenoid saponins from Aster lingulatus. Phytochemistry 44, 337–340.
  • Sparg S. G., Light M. E., Van Staden J., 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243.
  • Sung M. K., Kendall C. W. C., Koo M. M., Rao A. V., 1995. Effect of soybean saponins and gypsophila saponin on growth and viability of colon carcinoma cells in culture. Nutr. Cancer 23, 259–270.
  • Sung M. K., Rao A. V., 1995. Saponins as anticancerogens. J. Nutr. 125, 7175–7245.
  • Tanaka O., Han E. C., Yamaguchi Y., Matsuura H., Murakami T.,taniyama T., Yoshikawa M., 2000. Saponins of plants of Panax species collected in Central Nepal, and their chemotaxonomical significance. Chem. Pharm. Bull. 48, 889–892.
  • Wei F., Ma L. Y., Jin W. T., Ma S. C., Han G. Z., Khan I. A., Lin R. C., 2004. Antiinflammatory triterpenoid saponins from the seeds of Aesculus chinensis. Chem. Pharm. Bull. 52, 1246–1248.
  • Wu C. A., Yang Y., 2004. Induction of cell death by saponin and antigen delivery. Pharm. Res. 21, 271–277.
  • Yan Y., Chen M. Z., 2001. Inhibitory effect of total extract of Astragalus on hepatocyte apoptosis. Chin. J. Pharmacol. Toxicol. 15, 287–292.
  • Yin X., Zhang Y., Wu H., Zhu X., Zheng X., Jiang S., Zhuo H., Shen J., Li L., Qiu J., 2004. Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats. J. Pharmacol. Sci. 95, 256–266.
  • Yui S., Kudo T., Hodono K., Mimaki Y., Kuroda M., Sashida Y., Yamazaki M., 2003. Characterization of the growth-inhibitory and apoptosis-inducing activities of a triterpene saponin, securioside B against BAC1.2F5 macrophages. Mediators Inflamm. 12, 157–66.
  • Zhang W. J., Wojta J., Binder B. R., 1997. Regulation of fibrinolytic potential of cultured human umbilical vein endothelial cell: Astragaloside IV downregulates plasminogen activator inhibitor-I and upregulates tissue-type plasminogen activator expression. J. Vasc. Res. 34, 73–80.
  • Zhu S., Zou K., Cai S., Meselhy R. M., Komatsu K., 2004. Simultaneous Determination of Triterpene Saponins in Ginseng Drugs by High-Performance Liquid Chromatography. Chem. Pharm. Bull. 52, 995–998.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.