Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 4 | 331-343
Article title

Zastosowanie spektrometrii mas w poszukiwaniach biomarkerów chorób nowotworowych

Title variants
Application of mass spectrometry for discovery of cancer biomarkers
Languages of publication
Recently, mainly thanks to the creation of genomic sequences' databases of many organisms and invention of new technologies, rapid development of proteomics took place. Proteomics is the branch of modern molecular biology that deals with global analysis of proteins. A crucial part of this area of research is mass spectrometry, which allows sensitive, precise, fast and automated identification of single components of highly complex protein mixtures. Proteomic analysis is a multistage process that consists of sample collection and preparation, protein separation, their quantification and identification, and analysis of the collected data. One of the aims of proteomics is to identify biomarkers - specific indicators of defined biological processes. The biomarkers are extremely important from the medical point of view, since they can be applied as diagnostic parameters, or serve as aims of novel therapies. As cancer is still an unsolved problem of healthcare, many experiments have been conducted aiming at identification of biomarkers of these incurable illnesses.
Physical description
  • Instytut Biochemii, Wydział Biologii Uniwersytetu Warszawskiego, Miecznikowa 1, 02-096 Warszawa, Polska
  • Instytut Biochemii, Wydział Biologii Uniwersytetu Warszawskiego, Miecznikowa 1, 02-096 Warszawa, Polska
  • Adam B., Qu Y., Davis J. W., Ward M. D., Clements M. A., Cazares L. A., Semmes O. J., Schellhammer p. F., Yasui Y., Feng Z., Wright G. L., 2002. Serum Protein Fingerprinting Coupled with a Pattern-Matching Algorithm Distinguishes Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men. Cancer Res. 62, 3609-3614.
  • Aebersold R., Mann M., 2003. Mass Spectrometry-Based Proteomics. Nature 422, 198-207.
  • Alaiya A. A., Roblick U. J., Franzen B., Bruch H., Auer G., 2003. Protein Expression Profiling in Human Lung, Breast, Bladder, Renal, Colorectal and Ovarian Cancers. J. Chromatogr. B 787, 207-222.
  • Albrethsen J., Bøgebo R., Gammeltoft S., Olsen J., Winther B., Raskov H., 2005. Upregulated Expression of Human Neutrophil Peptides 1, 2 and 3 (HNP 1-3) in Colon Cancer Serum and Tumours: a Biomarker Study. BMC Cancer 5, 8.
  • Barnidge D. R., Jelinek D. F., Muddiman D. C., Kay n. Y., 2005. Quantitative Protein Expression Analysis of cll b Cells from Mutated and Unmutated igvh Subgroups Using Acid-Cleavable Isotope-Coded Affinity Tag Reagents. J. Proteome Res. 4, 1310-1317.
  • Bernard K., Litman E., Fitzpatrick J. L., Shellman Y. G., Argast G., Polvinen K., Everett A. D., Fukasawa K., Norris D. A., Ahn N. G., Resing K. A., 2003. Functional Proteomic Analysis of Melanoma Progression. Cancer Res. 63, 6716-6725.
  • Bischoff R., Luider T. M., 2004. Methodological Advances in the Discovery of Protein and Peptide Disease Markers. J. Chromatogr. B 803, 27-40.
  • Block T. M., Comunale M. A., Lowman M., Steel L. F., Romano P. R., Fimel C., Tennant B. C., London w. T., Evans A. A., Blumberg B. S., Dwek R. A., Mattu T. S., Mehta A. S., 2005. Use of Targeted Glycoproteomics to Identify Serum Glycoproteins that Correlate with Liver Cancer in Woodchucks and Humans. Proc. Natl. Acad. Sci. Usa 102, 779-784.
  • Brown K. J., Fenselau C., 2004. Investigation of Doxorubicin Resistance in mcf-7 Breast Cancer Cells Using Shotgun Comparative Proteomics with Proteolytic 18^O Labeling. J. Proteome Res. 3, 455-462.
  • Brönstrup M., 2004. Absolute Quantification Strategies in Proteomics Based on Mass Spectrometry. Expert Rev. Proteomics 1, 503-512.
  • Cazares L. H., Adam B., Ward M. D., Nasim S., Schell-Hammer P. F., Semmes O. J., Wright G. L., 2002. Normal, Benign, Preneoplastic, and Malignant Prostate Cells Have Distinct Protein Expression Profiles Resolved by Surface Enhanced Laser Desorption/Ionization Mass Spectrometry. Clin. Cancer Res. 8, 2541-2552.
  • Chamrad D. C., Körting G., Stühler K., Meyer H. K., Klose J., Blüggel M., 2004. Evaluation of Algorithms for Protein Identification from Sequence Database Using Mass Spectrometry Data. Proteomics 4, 619-628.
  • Chumbalkar V. C., Subhashini C., Dhople V. M., Sundaram C. S., Jagannadham M. V., Kumar K. N., Srinivas P. N. B. S., Mythili R., Rao M. K., Kulkarni M. J., Hegde S., Hegde A. S., Samual C., Santosh V., Singh L., Sirdeshmukh R., 2005. Differential Protein Expression in Human Gliomas and Molecular Insights. Proteomics 5, 1167- 1177.
  • Craven R. A., Banks R. E., 2001. Laser Capture Microdissection and Proteomics: Possibilities and Limitation. Proteomics 1, 1200-1204.
  • Diamandis E. P., 2004. Mass Spectrometry as a Diagnostic and a Cancer Biomarker Discovery Tool. Mol. Cell. Proteomics 3, 367-378.
  • Everley P. A., Krijgsveld J., Zetter B. R., Gygi S. P., 2005. Quantitative Cancer Proteomics: Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) as a Tool for Prostate Cancer Research. Mol. Cell. Proteomics 3, 729-735.
  • Görg A., Weiss W., Dunn M. J., 2004. Current Two-Dimensional Electrophoresis Technology for Proteomics. Proteomics 4, 3665-3685. Microbiol. Mol. Biol. Rev. 66, 39-63.
  • Grønborg M., Kristiansen T. Z., Iwahori A., Chang R., Reddy R., Sato N., Molina H., Jensen O. N., Hruban R. H., Goggins M. G., Maitra A., Pandey A., 2005. Biomarker Discovery from Pancreatic Cancer Secretome Using a Differential Proteomics Approach. Mol. Cell. Proteomics, Epub Ahead of Print.
  • Gygi S. P., Rist B., Gerber S. A., Turecek F., Gelb M. H., Aebersold R., 1999. Quantitative Analysis of Comlex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 17, 994-999.
  • Hale J. E., Gelfanova V., Ludwig J. R., Knierman M. D., 2003. Application of Proteomics for Discovery of Protein Biomarkers. Brief. Funct. Genomic. Proteomic. 2, 185-192.
  • Hanash S., 2003. Disease Proteomics. Nature 422, 226-232.
  • Issaq H. J., Veenstra T. D., Conrads T. P., Felschow D., 2002. The SELDI-TOF MS Approach to Proteomics: Protein Profiling and Biomarker Identification. Biochem. Biophys. Res. Commun. 292, 587-592.
  • Jensen O. N., Podtelejnikov A. V., Mann M., 1997. Identification of the Components of Simple Protein Mixtures by High-Accuracy Peptide Mass Mapping and Database Searching. Anal. Chem. 69, 4741-4750.
  • Kelleher, 2004. Top-Down Proteomics. Anal. Chem. 76, 196a-203a.
  • Koopmann J., Zhang Z., White N., Rosenzweig J., Fedarko N., Jagannath S., Canto M. I., Yeo C. J., Chan D. W., Goggins M., 2004. Serum Diagnosis of Pancreatic Adenocarcinoma Using Surface-Enhanced Laser Desorption and Ionization Mass Spectrometry. Clin. Cancer Res. 10, 860-868.
  • Kozak K. R., Amneus M. W., Pusey S. M., Su F., Luong M. N., Luong S. A., Reddy S. T., Farias-Eisner R., 2003. Identification of Biomarkers for Ovarian Cancer Using Strong Anion-Exchange Proteinchips: Potential Use in Diagnosis and Prognosis. Proc. Natl. Acad. Sci. U.S.A. 100. 12343-12348.
  • Laronga C., Becker S., Watson P., Gregory B., Cazares L., Lynch H., Perry R. R., Wright G. L., Drake R. R., Semmes O. J., 2003-2004. Selditof Serum Profiling for Prognostic and Diagnostic Classification of Breast Cancers. Disease Markers 19, 229-238.
  • Li C., Hong Y., Tan Y., Zhou H., Ai J., Li S., Zhang L., Xia Q., Wu J., Wang H., Zeng R., 2004. Accurate Qualitative and Quantitative Proteomic Analysis of Clinical Hepatocellular Carcinoma Using Laser Capture Microdissection Coupled with Isotope-Coded Affinity Tag and Two-Dimensional Liquid Chromatography Mass Spectrometry. Mol. Cell. Proteomics 3, 399-409.
  • Lu Z., Hu L., Evers S., Chen J., Shen Y., 2004. Differential Expression Profiling of Human Pancreatic Adenocarcinoma and Healthy Pancreatic Tissue. Proteomics 4, 3975-3988.
  • Mocellin S., Rossi C. R., Traldi P., Nitti D., Lise M., 2004. Molecular Oncology in the Post-Genomic Era: the Challenge of Proteomics. Trends Mol. Med. 10, 24-32.
  • Ong S., Blagoev B., Kratchmarova I., Kristensen D. B., Steen H., Pandey A., Mann M., 2002. Stable Isotope Labeling by Amino Acids in Cell Culture, Silac, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteomics 1, 376-386.
  • Paweletz C. P., Trock B., Pennanen M., Tsangaris T., Magnant C., Liotta L. A., Petricoin E. F., 2001. Proteomic Patterns of Nipple Aspirate Fluids Obtained by Selditof: Potential for New Bio-Markers to Aid in the Diagnosis of Breast Cancer. Dis. Markers 17, 301-307.
  • Petricoin E. F., Ardekani A. M., Hitt B. A., Levine p. J., Fusaro V. A., Steinberg S. M., Mills G. B., Simone C., Fishman D. A., Kohn E. C., Liotta L. A., 2002. Use of Proteomic Patterns in Serum to Identify Ovarian Cancer. Lancet 359, 572-577.
  • Phizicky E., Bastiaens P. I. H., Zhu H., Snyder M., Fields S., 2003. Protein Analysis On a Proteomic Scale. Nature 422, 208-215.
  • Quy., Adam B., Yasui Y., Ward M. D., Cazares L. H., Schellhammer P. F., Feng Z., Semmes O. J., Wright G. L. 2002. Boosted Decision Tree Analysis of Surface-Enhanced Laser Desorption/Ionization Mass Spectral Serum Profiles Discriminates Prostate Cancer from Noncancer Patients. Clin. Chem. 48, 1835-1843.
  • Reinders J., Lewandrowski U., Moebius J., Wagner Y., Sickmann A., 2004. Challenges in Mass Spectrometry-Based Proteomics. Proteomics 4, 3686- 3703.
  • Reiss T., 2001. Drug Discovery of the Future: the Implications of the Human Genome Project. Trends Biotechnol. 19, 496-499.
  • Rosty C., Christa L., Kuzdzal S., Baldwin W. M., Zahurak M. L., Carnot F., Chan D. W., Canto M., Lillemoe K. D., Cameron J. L., Yeo C. J., Hruban r. H., Goggins M., 2002. Identification of Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-Associated Protein I as a Biomarker for Pancreatic Ductal Adenocarcinoma by Protein Biochip Technology. Cancer Res.h 62, 1868-1875.
  • Sadygov R. G., Cociorva D., Yates J. R., 2004. Large-Scale Database Searching Using Tandem Mass Spectra: Looking Up the Answer in the Back of the Book. Nat. Methods 1, 195-202.
  • Sakai J., Kojima S., Yanagi K., Kanaoka M., 2005. 18^O-Labeling Quantitative Proteomics Using An Ion Trap Mass Spectrometer. Proteomics 5, 16-23.
  • Shau H., Chandler G. S., Whitelegge J. P., Gornbein J. A., Faull K. F., Chang H. R., 2003. Proteomic Profiling of Cancer Biomarkers. Brief. Funct. Genomic. Proteomic. 2, 147-158.
  • Soltys S. G., Le Q., Shi G., Tibshirani R., Giaccia A. J., Koong A. C., 2004. the Use of Plasma Surface-Enhanced Laser Desorption/Ionization Time-Offlight Mass Spectrometry Proteomic Patterns for Detection of Head and Neck Squamous Cell Cancers. Clin. Cancer Res. 10, 4806-4812.
  • Somiari R. I., Sullivan A., Russell S., Somiari S., Hu H., Jordan R., George A., Katenhusen R., Buchowiecka A., Arciero C., Brzeski H., Hooke J., Shriver C., 2004. High-Throughput Proteomic Analysis of Human Infiltrating Ductal Carcinoma of the Breast. Proteomics 3, 1863-1873.
  • Srivnivas P. R., Verma M., Zhao Y., Srivastava S. 2002. Proteomics for Cancer Biomarker Discovery. Clin Chem, 48: 1160-1169.
  • Standing K. G., 2003. Peptide and Protein De Novo Sequencing by Mass Spectrometry. Curr. Opin. Struct. Biol. 13, 595-601.
  • Stasyk T., Huber L. A., 2004. Zooming In: Fractionation Strategies in Proteomics. Proteomics 4, 3704-3716.
  • Steel L. F., Shumpert D., Trotter M., Seeholzer S. H., Evans A. A., London W. T., Dwek R., Block T. M., 2003. A Strategy for the Comparative Analysis of Serum Proteomes for the Discovery of Biomarkers for Hepatocellular Carcinoma. Proteomics 3, 601-609.
  • Steen H., Mann M., 2004. the ABC's (and XYZ's) of Peptide Sequencing. Nature Rev. Mol. Cell. Biol. 5, 699-711.
  • Tomonaga T., Matsushita K., Yamaguchi S., Ohishi M., Kodera Y., Maeda T., Shimada H., Ochiai T., Nomura F., 2004. Identification of Altered Protein Expression and Post-Translational Modifications in Primary Colorectal Cancer by Using Agarose Two-Dimensional Gel Electrophoresis. Clin. Cancer Res. 10, 2007-2014.
  • Tyers M., Mann M., 2003. From Genomics to Proteomics. Nature 422, 193-197.
  • Vlahou A., Schellhammer P. F., Mendrinos S., Patel K., Kondylis F. I., Gong L., Nasim S., Wright G. L., 2001. Development of a Novel Proteomic Approach for the Detection of Transitional Cell Carcinoma of the Bladder in Urine. Am. J. Pathol. 158, 1491-1502.
  • Vlahou A., Schorge J. O., Gregory B. W., Coleman R. L., 2003. Diagnosis of Ovarian Cancer Using Decision Tree Classification of Mass Spectral Data. J. Biomed. Biotechnol. 2003, 308-314.
  • Wolters D. A., Washburn M. P., Yates J. R., 2001. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 73, 5683-5690.
  • Won Y., Song H., Kang T. W., Kim J., Han B, Lee S., 2003. Pattern Analysis of Serum Proteome Distinguishes Renal Cell Carcinoma from Other Urologic Diseases and Healthy Persons. Proteomics 3, 2310-2316.
  • Wulfkuhle J. D., Liotta L. A., Petricoin E. F., 2003. Proteomic Applications for the Early Detection of Cancer. Nat. Rev. Cancer 3, 267-275.
  • Xiao X., Liu D., Tang Y., Guo F., Xia L., Liu J., He D., 2002-2003. Development of Proteomic Patterns for Detecting Lung Cancer. Dis. Markers 19, 33-39.
  • Yang S., Xiao X., Zhang W., Zhang L., Zhang W., Zhou B., Chen G., He D., 2005. Application of Serum Seldi Proteomic Patterns in Diagnosis of Lung Cancer. Bmc Cancer 5, 83.
  • Yates J. R., 1998. Mass Spectrometry and the Age of the Proteome. J. Mass Spectrom. 33, 1-19.
  • Zang L., Toyd. P., Hancock W. S., Sgroi D. C., Karger B. L., 2004. Proteomic Analysis of Ductal Carcinoma of the Breast Using Laser Capture Micro-Dissection, LC_MS, and 16^O/18^O Isotopic Labeling. J. Proteome Res. 3, 604- 612.
  • Zhang Z., Bast R. C., Yu Y., Li J., Sokoll L. J., Rai A. J., Rosenzweig J. M., Cameron B., Wang Y. Y., Meng X., Berchuck A., Van Haaften-Day C., Hacker N. F., De Bruijn H. W. A., Van Der Zee A. G. J., Jacobs I. J., Fung E. T., Chan D. W., 2004. Three Biomarkers Identified from Serum Proteomic Analysis for the Detection of Early Stage Ovarian Cancer. Cancer Res. 64, 5882-5890.
  • Zhou G., Li H., Decamp D., Chen S., Shu H., Gong Y., Flaig M., Gillespie J. W., Hu N., Taylor P. R., Emmert-Buck M. R., Liotta L. A., Petricoin E. F., Zhao Y., 2002. 2D Differential In-Gel Electrophoresis for the Identification of Esophageal Scans Cell Cancer-Specific Protein Markers. Mol. Cell. Proteomics 1, 117-123.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.