Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 2-3 | 227-239
Article title

Systemy markerów molekularnych i ich zastosowanie w hodowli roślin

Title variants
Molecular markers systems and their application in plant breeding
Languages of publication
The development of molecular techniques has led to significant improvement in our knowledge of plant genetics and understanding of the molecular mechanisms operating within plant genomes. Considerable emphasis has been laid on the use of molecular markers in studying DNA sequence variation among species, monitoring genetic variation and in genotype identification. Molecular (genetic) marker is defined as a sequence on a chromosome with specific location e.g. restriction enzyme cutting site, coding regions of DNA or segment of DNA with no known coding function but with determinable inheritance pattern. Improvements in marker systems and in the techniques used to identify DNA sequences linked to useful traits, have both enabled tremendous advances in the area of plant breeding. The first developed marker system, RFLP, has laid the groundwork for modern genetic analysis and its numerous improvements led to development of separate systems such as RAPD and AFLP. The increasing knowledge of genotypes, acquired through genome sequencing projects, enabled designing of marker systems based on highly specific motifs such as minisatellite and microsatellite DNA repeats. Other molecular marker-based systems like sequence-tagged sites (STS), sequence characterized amplified regions (SCAR) and single nucleotide polymorphism (SNP) have been routinely used to assist selection for desirable characters, comparative mapping, sequencing of plant genomes and breeding programs.
Physical description
  • Instytut Hodowli i Aklimatyzacji Roślin Oddział Bydgoszcz, Al. Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Polska
  • AGHAJAN M., 2003. Pyrosequencing in a Microchannel. NNUN REU Program at Stanford Nanofabrication Facility, 74-75.
  • ASHKENAZI V., CHANI E., LAVI U., LEVY D., HILLEL J., VEILLEUX R. E., 2001. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome 44, 50-62.
  • BARTH S., MELCHINGER A. R., LUBBERSTEDT T., 2002. Genetic diversity in Arabidopsis thaliana L. Heynh. Investigated by cleaved amplification polymorphic sequence (CAPS) and inter-simple sequence repeat (ISSR) markers. Mol. Ecol. 11, 495-505.
  • BAUTISTA N. S., SOLIS R., KAMIJIMA O., ISHII T., 2001. RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet. Syst. 76, 71-79.
  • BEDNAREK P. T., KUBICKA H., KUBICKA M., 2002. Morphological, cytological and BSA-based testing on limited segregation population AFLPs. Cell. Mol. Biol. Lett. 7, 635-48.
  • BERALDI D., PICARELLA M. E., SORESSI G. P., MAZZUCATO A., 2004. Fine mapping of the partenocarpic fruit (pat) mutation in tomato. Theor. Appl. Genet. 108, 209-216.
  • Berzonsky W. A., Francki G. M., 1999. Biochemical, molecular, and cytogenetic technologies for characterizing 1RS in wheat: A review. Euphytica 108, 1-19.
  • BOLIBOK H., RAKOCZY-TROJANOWSKA M., 2003. Evaluating the efficiency of SAMPL marker system in assessing genetic diversity in winter rye (Secale cereale L.). 7th Internat. Congress of Plant Mol. Biol. Barcelona.
  • BORNET B., BRANCHARD M., 2004. Use of ISSR fingerprints to detect microsatellites and genetic diversity in several related Brassica taxa and Arabidopsis thaliana. Hereditas 140, 245-248.
  • BRADEEN J. M., SIMON P. W., 1998. Conversion of an AFLP fragment linked to the caroot Y2 locus to a simple, codominant, PCR-based marker form. Theor. Appl. Genet. 97, 960-967.
  • BROOKES, A. J., 1999. The essence of SNPs. Gene 234, 177-186.
  • CAETANO-ANOLLES G., BASAM B. J., GRESSHOFF P. M., 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9, 553-557.
  • CHEŁKOWSKI, J., GOLKA, L., STĘPIEŃ. Ł., 2003. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 44, 323-338.
  • CHEN X. H., NIU Y. C., HU B. Z., 2004. Identyfication of RAPD markers linked to the resistance gene Yr5 against wheat stripe rust with denaturing PAGE-silver stining. Yi. Chuan. Xue. Bao. 31, 270-274.
  • CHWEDORZEWSKA K. J., BEDNAREK P. T., PUCHALSKI J., KRAJEWSKI P., 2002. AFLP-profiling of long-term stored and regenerated rye Genebank samples. Cell. Mol. Biol. Lett. 7, 457-463.
  • DEPUTY J. C., MING R., MA H., LIU Z., FITCH M. M., WANG M., MANSHARDT R., STILES J. I. 2002., Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 106, 107-111.
  • DOMENIUK V. P., BELOUSOV A. A., SIVOLAP IU. M., 2002. DNA-marking of quantitive traits in corn. Tsitol. Genet. 36, 9-15.
  • FU Y. B., 1999. Patterns of the purging of deleterious genes with synergistic interactions in differ
  • ent breeding schemes. Theor. Appl. Genet. 98, 337-346.
  • HACKAUF B., WEHLING P., 2002. Identyfication of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 12, 17-25.
  • IRZYKOWSKA L, WOLKO B., 2004. Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J. Appl. Genet. 45, 297-306.
  • IRZYKOWSKA L., WOLKO R., ŚWIĘCICKI W. K., 2002. Interval mapping of QTLs controlling some morphological traits in pea. Cell. Mol. Biol. Lett. 7, 665-670.
  • JENA K. K., KHUSH G. S., 1990. Introgression of genes from 0ryza officinalis Wall. ex Watt to cultivated rice. 0. sativa L.. Theor. Appl. Genet. 80, 737-745.
  • JORDAN D. R., CASU R. E., BESSE P., CARROLL B. C., BERDING N., MCINTYRE C. L., 2004. Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorgium. Genome 47, 988-993.
  • KARP, A., ISAAC, P. G., INGRAM, D. S., 1998. Molecular tools for screening biodiversity: plants and animals. London: Chapman and Hall.
  • KEANE B., PELIKAN S., TOTH G. P., SMITCH M. K., ROGSTAD S., 1999. Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes. Am. J. Bot. 86, 1226-1238.
  • KELLER M., KELLER B., SCHACHERMAYR G., WINZELER M., SCHMID J. E., STAMP P., MESSMER M. M., 1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor. Appl. Genet. 98, 903-912.
  • KHLESTKINA E. K., PESTSOVA E. G., SALINA E., RODER M. S., ARBUZOVA V. S., KOVAL S. F., BORNER A., 2002. Genetic mapping and tagging of wheat genomes using RAPD, STS, SSR markers. Cell. Mol. Biol. Lett. 7, 795-802.
  • KIM D. S., LEE I. S., JANG C. S., KANG S. Y., SONG H. S., LEE Y. I., SEO Y. W., 2004. Development of AFLP-derived STS markers for the selection of 5-meth-yltryptophan-resistant rice mutants. Plant Cell Rep. 23, 71-80.
  • KING R.A., FERRIS C., 2002. A variable minisatellite sequence in the chloroplast genome of Sorbus L. (Rosaceae: Maloideae). Genome 45, 570-600.
  • KOJIMA T., NAGAOKA T., NODA K., OGIHARA Y., 1998. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of markers. Theor. Appl. Genet., 96, 37-45.
  • KORNBERG A., LIEBERMAN I., SIMMS E. S., 1955. Enzymatic synthesis of purine nucleotides. J. Biol. Chem. 215, 417-427.
  • LAW J. R., DONINI P., KOEBNER R. M. D., REEVES J. C., COOKE R. J., 1998. DNA profiling and plant variety registration. III: the statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102, 335-342.
  • LIERSCH A., BARTKOWIAK-BRODA I., OGRODOWCZYK M., KRÓTKA K., 2004. Związek pomiędzy heterozją i dystansem genetycznym oceniony na podstawie polimorfizmu markerów RAPD u rzepaku ozimego (Brassica napus L.). Genetyka w ulepszaniu roślin użytkowych. Instytut Genetyki Roślin PAN w Poznaniu 2004, 261-268.
  • MALYSHEV S. V., KORZUN V. N., ZABEN'KOVA K. I., VOILOKOV A. V., BERNER A., KARTEL' N. A., 2003. Comparitive molecular-genetic mapping of genomes of ryse (Secale cereale L.) and other cereals. Tsitol. Genet. 37, 9-20.
  • MAXAM A. M., GILBERT W., 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560.
  • MOCHIDA K., YAMAZAKI Y., OGIHARA Y., 2003. Discrimination of homoeologous expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol. Genet. Genomics 270, 371-377.
  • MORGANTE M., HANAFEY M., POWELL W., 2002. Micro-satellites are preferentially associated with non-repetitive DNA in plant genomes. Nat. Genet. 30, 194-200.
  • MORGANTE M., VOGEL J., 1994. Compound microsatellite primers for the detection of genetic polymorphisms. U.S. Patent Appl 08/326456
  • NEUHAUS-URL G., NEUHAUS G., 1993. The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: a comparison with radioactivity. Transgenic Res. 2, 115-120.
  • NISHIZAWA S., KUBO T., MIKAMI T., 2000. Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr. Genet. 37, 34-38.
  • PACEY-MILLER T., HENRY R. J., 2003. Single-nucleotide polymorphism detection in plant using a single-stranded pyrosequencing protocol with a universal biotinylated primer. Anal. Biochem. 317, 166-170.
  • QUARRIE S. A., LAZIĆ-JANČIĆ V., KOVAČIEVIC D., STEED A., PEKIĆ S., 1999. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J. Exp. Bot. 50, 1299-1306.
  • RAKOCZY-TROJANOWSKA M., BOLIBOK H., 2004. Characteristic and a comparision of three classes of microsatellite-based markers and their application in plants. Cell. Mol. Biol. Lett. 9, 221-238.
  • RICKERT A. M., PREMSTALLER A., GEBHARDT C., OEFNER P. J., 2002. Genotyping of Snps in a polyploid genome by pyrosequencing. Biotechniques 32, 592-593, 596-598.
  • RHARRABTI Y., ELHANI S., MARTOS NUÑEZ V. Y GARCÍA DEL MORAL L. F., 2000. Relationship between some quality traits and yield of durum wheat under southern Spain conditions. [W:] Durum wheat improvement in the Mediterranean region: New challenges. ROYO C., NACHIT M. M., DI FONZO N., ARAUS, J. L. (red.). Options Méditerranéennes 40, 529-531.
  • ROMAGOSA I., HAN F., ULLRICH S. E., HAYES P. M., WESENBERG D. M., 1999. Verification of yield QTL through realized molecular marker- assisted selection responses in a barley cross. Mol. Breed. 5, 143-152.
  • ROY J. K., BALYAN H. S., PRASAD M., GUPTA P. K., 2002. Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor. Appl. Genet. 104, 465-472.
  • SATO Y., NISHIO T., 2003. Mutation detection in rice waxy mutants by PCR-RF-SSCP. Theor. Appl. Genet. 3, 560-567.
  • SILLS, G., NIENHUIS J., 1998. Changes in DNA-marker frequencies associated with response to contrasting selection methods in Arabidopsis. Theor. Appl. Genet. 97, 275-282.
  • SINGRUN CH., HSAM S. L., ZELLER F. J., WENZEL G., MOHLER V., 2004. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor. Appl. Genet. 109, 210-214.
  • SMITH H. O., WILCOX K. W., 1970. A restriction enzyme from Hemophilus influenzae. 1. Purification and general properties. J. Mol. Biol. 51, 379-391.
  • SOUTHERN E. M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
  • STĘPIEŃ Ł., BŁASZCZYK L., CHEŁKOWSKI J., 2004. Markery DNA dla identyfikacji genów odporności na rdzę brunatną u pszenicy uprawnej. Genetyka w ulepszaniu roślin użytkowych, Instytut Genetyki Roślin PAN w Poznaniu, 309-318.
  • STUBER C. W., LINCOLN S. E., WOLFF D. W., HELENTJARIS T., LANDER E. S., 1992. Identification of genetic factors contributing to heterosis in a hybrid form elite maize inbred lines using molecular markers. Genetics 132, 823-839.
  • TOUZET P., HUEBER N., BURKHOLZ A., BARNES S., CUGUEN J., 2004. Genetic analysis of male fertility restoration in wild cytoplasmic male sterility G of beet. Theor. Appl. Genet. 109, 240-247.
  • TSENG Y. T., LO H. F., HWANG S. Y., 2002. Genotyping and assessment og genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot. Bull. Acad. Sin. 43, 99-105.
  • TYRKA M., BLASZCZYK L., CHELKOWSKI J., LIND V., KRAMER I., WEILEPP M., WISNIEWSKA H., ORDON F., 2004. Development of the single nucleotide polymorphism marker of the wheat Lr1 leaf rust resistance gene. Cell. Mol. Biol. Lett. 9, 879-889.
  • URASAKI N., TOKUMOTO M., TARORA K., BAN Y., KAYANO T., TANAKA H., OKU H., CHINEN I., TERAUCHU R., 2002. A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor. Appl. Genet. 104, 281-285.
  • VARSHNEY A., MOHAPATRA T., SHARMA R. P., 2004. Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor. Appl. Genet. 109, 153-159.
  • VOS P., HOGERS R., BLEEKER M., REIJANS M., VAN DE LEE T., HORNES M., FRIJTERS A., POT J., PELEMAN J., KUIPER M., ZABEAU M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res., 23, 4407-4414.
  • WANG C. T., HUANG Z. J., HE C. F., BI C. L., SHEN Y. Z., 2001. Detection of the wheat salt-tolerant-mutant using PCR-SSCP combining with direct sequencing. Yi Chuan. Xue Bao. 28, 852-855.
  • WATSON J. D., CRICK F. H. C., 1953. A Structure for Deoxyribose Nucleic Acid. Nature 171, 737-738.
  • WELSH J., MCCLELLAND M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 8, 7213-7218.
  • WILLIAMS J. G. K., KUBELIK A. R., LIVAK K. J., RAFALSKI J. A., TINGEY S. V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18, 6531-6535.
  • YANG J. B., WANG X. F., ZHAO C. S., XIANG T. H., LI L., 2002. Cloning and sequencing of fragments associated with cytoplasm male sterility of rice. Yi Chuan Xue Bao. 29, 808-813.
  • ZHOU W- C., KOLB F. L., BAI G- H., DOMIER L. L., BOZE L. K., SMITH N. J., 2003. Validation of a major QTL for scrab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed. 122, 40-46.
  • ZIETKIEWICZ E., RAFALSKI A., LABUDA D., 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.