Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 2-3 | 163-173
Article title

Komputerowe modelowanie regulacji fosforylacji oksydacyjnej

Title variants
Computer modelling of regulation of oxidative phosphorylation
Languages of publication
Quantitative description of complex biological systems is presented using as an example a dynamic computer model of oxidative phosphorylation in mitochondria. Theoretical studies concerning the regulation of this process in response to varying energy demand in intact skeletal muscles and heart are discussed. Computer simulations demonstrate that it is possible to predict theoretically, at least to try to, the existence of completely new phenomena in biological systems.
Physical description
  • BALABAN R. S., KANTOR H. L., KATZ L. A., BRIGGS R. W., 1986. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science 232, 1121-1123.
  • BOHNENSACK R., 1981. Control of energy transformation of mitochondria. Analysis by a quantitative model. Biochim. Biophys. Acta 634, 203-218.
  • CLARK 3RD B. J., ACKER M. A., MCCULLY K., SUBRAMANIAN H. V., HAMMOND R. L., SALMONS S., CHANCE B., STEPHENSON L. W., 1988. In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle. Am. J. Physiol. 254, C258-266.
  • CHANCE B., WILLIAMS G. R., 1956. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65-134.
  • CONSTABLE S. H., FAVIER R. J., MCLANE J. A., FELL R. D., CHEN M., HOLLOSZY J. O., 1987. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. Am. J. Physiol. 253, C316-C322.
  • CORTASSA S., AON M. A., MARBAN E., WINSLOW R. L., O'ROURKE B., 2003. An integrated model of cardiac energy metabolism and calcium dynamics. Biophys. J. 84, 2734-2755.
  • DUDLEY G. A., TULLSON P. C., TERJUNG R. L., 1987. Influence of mitochondrial content on the sensitivity of respiratory control. J. Biol. Chem. 262, 9109-9114.
  • FROM A. H. L., ZIMMER S. D., MICHURSKI S. P., MOHANAKRISHNAN P., ULSTAD V. K., THOMA W. J., UGURBIL, K., 1990. Regulation of oxidative phosphorylation rate in the intact cell. Biochemistry 29, 3731-3743.
  • HAGBERG J. M., HICKSON R. C., EHSANI A. A., HOLLOSZY J. O., 1980. Faster adjustment to and recovery from submaximal exercise in the trained state. J. Appl. Physiol. 48, 218-224.
  • HANSFORD R. G., 1980. Control of mitochondrial substrate oxidation. Curr. Top. Bioenerg. 10, 217- 277.
  • HEINEMAN F. W., BALABAN R. S., 1993. Effects of after-load and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am. J. Physiol. 264, H433-H440.
  • HEINRICH R., RAPOPORT T. A., 1974. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89-95.
  • HICKSON R. C., BOMZE H. A., HOLLOSZY J. O., 1978. Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. J. Appl. Physiol. 44, 877-881.
  • HOCHACHKA P. W., 1994. Muscles as Metabolic Machines. CRC Press, Boca Raton.
  • HOLLOSZY J. O., 1967. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242, 2278-2282.
  • HOPPELER H., FLUCK, M., 2003. Plasticity of skeletal muscle mitochondria: structure and function. Med. Sci. Sports Exerc. 35, 95-104.
  • JENESON J. A., WISEMAN R. W., WESTERHOFF H. V., KUSHMERICK M. J., 1996. The signal transduction function of oxidative phosphorylation is at least second order in ADP. J. Biol. Chem. 271, 27995-27998.
  • KACSER H., BURNS J. A., 1973. The control of flux. Symp. Soc. Exp. Biol. 32, 65-104.
  • KATZ L. A., SWAIN J. A., PORTMAN M. A., BALABAN R. S., 1989. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am. J. Physiol. 256, H265-H274.
  • KORZENIEWSKI B., 1998. Regulation of ATP supply during muscle contraction: theoretical studies. Biochem. J. 330, 1189-1195.
  • KORZENIEWSKI B., 2001. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim. Biophys. Acta 1504, 31-45.
  • KORZENIEWSKI B., 2003. Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Biochem. J. 375, 799-804.
  • KORZENIEWSKI B., MAZAT J.-P., 1996. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem. J. 319, 143- -148.
  • KORZENIEWSKI B., ZOLADZ J. A., 2001. A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys. Chem. 92, 17-34.
  • KORZENIEWSKI B., ZOLADZ J. A., 2003. Training-indu-ced adaptation of oxidative phosphorylation in skeletal muscle. Biochem. J. 374, 37-40.
  • KORZENIEWSKI B., NOMA A., MATSUOKA S., 2005. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys. Chem. 116, 145-157.
  • KUSHMERICK M. J., MEYER R. A., BROWN T. R., 1992. Regulation of oxygen consumption in fast--twitch and slow-twitch muscle. Am. J. Physiol. 263, C598-C606.
  • MCCORMACK J. G., HALESTRAP A. P., DENTON R. M., 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391-425.
  • MITCHELL P., 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148.
  • NICHOLLS D. G., FERGUSON S. J., 2002. Bioenergetics 3. Academic Press, London.
  • PHILLIPS S. M., GREEN H. J., MACDONALD M. J., HUGHSON, R. L., 1995. Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J. Appl. Physiol. 79, 1914-1920.
  • SAHLIN K., SODERLUND K., TONKONOGI M., HIRAKOBA, K., 1997. Phosphocreatine content in single fibres of human muscle after sustained submaximal exercise. Am. J. Physiol. 273, C172-C178.
  • TONKONOGI M., SAHLIN K., 1997. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol. Scand. 161, 345-353.
  • VENDELIN M., KONGAS O., SAKS V. A., 2000. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am. J. Physiol. 278, C747-C764.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.