PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2004 | 53 | 3-4 | 325-342
Article title

Genetyczne elementy ruchome u roślin i innych organizmów

Content
Title variants
EN
Genetic mobile elements in plants and other organisms
Languages of publication
PL EN
Abstracts
EN
Summary In this review the types of mobile genetic elements in prokaryotes and eukaryotes are presented. There is also information about their molecular characteristics, mechanisms ofmoving, evolution and their influence on genome structure and gene activity in organisms of plants, insects and humans. Transposable elements are abundant in genomes of lower and higher organisms. Mobile genetic elements are divided into two main groups: transposons and retrotransposons. The transposons, or "jumping genes" are fragments of DNA capable of moving, from a plasmid to another plasmid (or chromosome) in prokaryotes, and from one part of a chromosome to another (or to another chromosome) in eukaryotes. Transposons become transposed directly fromDNA to DNA eg. the Ac element of maize and the P element of Drosophila are similar to bacterial transposons. Retrotransposons accomplish transposition via an RNA intermediate that is reverse transcribed before integration into a new location within the host genome. They are ubiquitous in eukaryotes and constitute amajor portion of the nuclear genome in humans, animals and plants. They are dispersed as interspersed repetitive sequences through out the genome. Retrotransposons can be divided into two sub-groups: viral retrotransposons eg. Ty (yeast), copia (fruit fly), Bs1 (maize), LINEs (mammals), Cin4 (maize) and non-viral retrotransposons which comprise SINEs and processed pseudogenes. The properties of the genetic mobile elements have been exploited as genetic tools for plant genome analysis.
Keywords
Journal
Year
Volume
53
Issue
3-4
Pages
325-342
Physical description
Dates
published
2004
Contributors
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
author
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
author
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
author
  • Katedra Biologii Komórki, Wydział Nauk Przyrodniczych Uniwersytet Szczeciński, Wąska 13, 71-415 Szczecin, Polska
References
  • ABBO S., DUNFORD R. P., FOOTE T. N., READER S. M., FLAVELL R. B., MOORE G., 1995. Organization of retro - element and stem - loop repeat families in the genomes and nuclei of cereals. Chromosome Res. 3, 5-15.
  • ANANIEV E. V., PHILLIPS R. L., RINES H. W., 1998. Complex structure of knob DNA on maize chromosome 9: retrotransposon invasion into heterochromatin. Genetics 149, 2025-2037.
  • CHANDLER V. L.,HARDEMAN K., 1992. TheMu elements of Zea mays. Adv. Genet. 30, 77-122.
  • CHATTERJEE S., STARLINGER P., 1995. The role of subterminal sites of transposable element Ds of Zea mays in excision. Mol. Gen. Genet. 249, 281-288.
  • DINOCERA P. P. , SASAKI Y., 1990. LINEs: a superfamily of retrotransposable ubiquitous DNA elements. Trends in Genet. 6, 29-30
  • FEDOROFF N.,WESSLER S., SHURE M., 1983. Isolation of the transposable maize controlling elements Ac i Ds. Cell 53, 243-251 FIGUEIRAS A. M., DE LA PENA A., BENITO C., 1991. High mutability in rye (Secale cereale L.). Mutat. Res. 264, 171-177.
  • FLAVELL R. B., 1986. Repetitive DNA and chromosome evolution in plants. Phil. Trans R Soc. Lond. B Bid. Sci. 312, 227-242.
  • FLAVELL A. J., PEARCE S. R., HESLOP-HARRISON J. S., KUMAR A., 1997. The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica 100, 185-195.
  • FLAVELL A., 2001. Retrotransposons rule in Carry- le-Rouet. Trends Genet. 17, 489-490.
  • FRANCKI M. G., 2001. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44, 266-274.
  • FUKUI K. N., SUZUKI G., LAGUDAH E. S., RAHMAN S., APPELS R., YAMAMOTO M., MUKAI Y., 2001. Physical arrangement of retrotransposon - related repeats in centromeric regions of wheat. Plant Cell Physiol. 42, 189-196.
  • GORBUNOVA V., LEVY A. A., 2000. Analysis of extrachromosomal Ac/Ds transposable elements. Genetics 155, 349-359.
  • GRANDBASTIEN M., 1992. Retroelements in higher plants. TIG 8, 103-108.
  • GRINDLEY N. D. F., REED R. R., 1985. Transpositional recombination in prokaryotes. Ann. Rev. Biochem. 54, 863-896.
  • HEFFRON F., 1983. Tn3 and its relatives. [W:] Mobile Genetic Elements. SHAPIRO J. A. (red.). New York Academic Press, NY, 223-260
  • HEINLEIN M., 1996. Excision patterns of Activator (Ac) and Dissociation (Ds) elements in Zea mays L.: implication for the regulation of transposition. Genetics 144, 1851-1869.
  • HESLOP-HARRISON J. S., BRANDES A., TAKETA S., SCHMIDT T., VERHININ A. V., ALKHIMOWA E. G., KAMM A., DOUDRICK R. L., SCHWARZACHER T., KATSIOTIS A., KUBIS S., KUMAR A., PEARCE S. R., FLAVELL A. J., HARRISON G. E., 1997. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197-204.
  • HIROCHIKA H., HIROCHIKA R., 1993. Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn. J. Genet. 68, 35-46.
  • HUDAKOVA S., MICHALEK W., PRESTING G. G., TEN HOOPEN R., DOS SANTOS K., JASENCAKOVA Z., SCHUBERT I., 2001. Sequence organization of barley centromeres. Nucleic Acid Res. 29, 5029-5035.
  • HUTTLEY G. A., MACRAE A. F., CLEGG M. T., 1995. Molecular evolution of Ac/Ds transposable-element family in Pearl millet and other grasses. Genetics 139, 1411-1412.
  • JAASKELAINEN M., MYKKANEN A., ARNA T., VICIENT C. M., SUONIEMI A., KALENDAR R., SAVILAHTI H., SCHULMAN A. H., 1999. Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant J. 20, 413-422.
  • JOHNS M. A.,MOTTINGER J., FREELING M., 1985. A lowcopy number, copia-like transposon in maize. EMBO J. 4, 1093-1102.
  • KATSIOTIS A., SCHMIDT T., HESLOP-HARRISON J. S., 1996. Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39, 410-417.
  • KIMURA Y., SHIMADA S., SOGO R., KUSABA M., SUNAGA T., BETSUYAKU S., ETO Y., NAKAYASHIKI H., MAYAMA S., 2001. OARE-1 a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol. 42, 1345-1354.
  • KISHII M., NAGAKI K., TSUJIMOTO H., 2001. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res. 9, 417-428.
  • KLACKNER N., 1981. Transposable elements in prokaryotes. Ann. Rev. Genet. 15, 341-404.
  • KO J., DO G., SUH D., SEO B., SHIN D., MOON H., 2002. Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45, 157-164.
  • KOPECKO D. J., COHEN S., 1975. Site specific recA - independant recombination between bacterial plasmids; Involvement of palindrmes at the recombination loci. Proc. Nat. Acad. Sci. USA 72, 1373-1377.
  • KOPREK T., MCELROY D., LOUWERSE J., WILLIAMS-CARRIER R., LEMAUX P.G., 2000. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J. 24, 253-263.
  • KOPREK T., RANGEL S., MCELROY D., LOUWERSE J. D., WILLIAMS-CARRIER R. E., LEMAUX P. G., 2001. Transposon- mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiology 125, 1354-1362.
  • KUBIS S. E., HESLOP-HARRISON J. S., DESEL C., SCHMIDT T., 1998. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol. Biol. 36, 821-831.
  • KUMAR A., BENNETZEN J. L., 1999. Plant retrotransposons. Annu. Rev. Genet. 33, 479-532.
  • KUMAR A., PEARCE S. R., MCLEAN K., HARRISON G., HESLOP-HARRISON J. S.,WAUGH R., FLAVELL A. J., 1997. The Ty1-copia group of retrotransposons in plants: genomic organization, evolution, and use as molecular markers. Genetica 100, 205-217.
  • LABRADOR M., CORCES V. G., 1997. Transposable element- host interactions: regulation of insertion and excision. Annu. Rev. Genet. 31, 381-404.
  • LANGDON T., SEAGO C.,MENDE M., LEGGETT M., THOMAS H., FORSTER J. W., THOMAS H., JONES R.N., JENKINS G., 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156, 313-325.
  • LINARES C., SERNA A., FOMINAYA A., 1999. Chromosomal organization of a sequence related to LTR-like elements of Ty1-copia retrotransposons in Avena species. Genome 42, 706-713.
  • LISCH D. R., FREELING M., LANGHAM R. J., CHOY M. Y., 2001. Mutator transposase is widespread in the Grasses. Plant Physiol. 125, 1293-1303.
  • LIU K., SOMERVILLE S., 1996. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare L. Genome 39, 1159-1168.
  • MACRAE A. F., CLEGG M. T., 1992. Evolution of Ac and Ds elements in select grasses (Poaceae). Genetica 86, 55-66.
  • MACRAE A. F., HUTTLEY G. A., CLEGG M. T., 1994. Molecular evolutionary characterization of an Activator (Ac)-like transposable element sequence from pearl millet (Pennisetum glaucum) (Poaceae). Genetica 92, 77-89.
  • MARILLONNET S.,WESSLER S. R., 1998. Extreme structural heterogeneity among themembers ofmaize retrotransposon family. Genetics 150, 1245-1256.
  • MCCLINTOCK B., 1948. Mutable loci in maize. Carnegie Inst. Wash. Year Book 47, 155-163.
  • MCCLINTOCK B., 1950. The origin and behavior at mutable loci in maize. Proc. Nat. Acad. Sci. USA 36, 344-355.
  • MCCLINTOCK B., 1952. Chromosome organization and gene expression. Cold Spring Symp. Quant. Biol. 16, 13-47.
  • MCCLINTOCK B., 1961. Some parallels between gene control systems in maize and in bacteria. Pm. Natur. 95, 265-277.
  • MCELROY D., LOUWERSE J. D., MCELROY S. M., LEMAUX P.G., 1997. Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J. 11, 157-165.
  • MONTE J. V., FLAVELL R. B., GUSTAFSON J. P., 1995. WIS 2-1A: an ancient retrotransposon in the Triticeae tribe. Theor. Appl. Genet. 91, 367-373.
  • MUNIZ L. H., CUADRADO A., JOUVE N., GONZALEZ J.M., 2001. The detection, cloning, and characterization of WIS 2-1A retrotransposon-like sequences in Triticum aestivum L. and xTriticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44, 979-989.
  • PARDUE M. L., DANILEVSKAYA O. N., TRAVERSE K. L., LOWENHAUPT K., 1997. Evolutionary links between telomeres and transposable elements. Genetica 100, 73-84.
  • PEARCE S. R., HARRISON G., HESLOP-HARRISON J. S., FLAVELL A. J., KUMAR A., 1997. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40, 617-625.
  • PRESTING G.,MALYSHEVA L., FUCHS J., SCHUBERT I., 1998. A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721-728.
  • SAEDLER H., NEVERS P., 1985. Transposition in plants: a molecular model. EMBO J. 4, 585-590.
  • SANDHU D., GILL K. S., 2002. Structural and functional organization of `1S0.8 gene-rich region' in the Triticeae. Plant Mol. Biol. 48, 791-804.
  • SCOTT L., LAFOE D.,WEIL C. F., 1996. Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics 142, 237-246.
  • SCHMIDT T., 1999. LINESs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol. Biol. 40, 903-910.
  • SINGLETON P., SAINSBURY D., 1993. Transposon. [W:] Dictionary of Microbiology and Molecular Biology. John Wiley and Sons, UK.
  • SMYTH D. R., 1991. Dispersed repeats in plant genomes. Chromosoma 100, 355-359.
  • SOLIS R., TAKUMI S., MORI N., NAKAMURA C., 1999. Ac-mediated trans-activation of the Ds element in rice (Oryza sativa L.) cells as revealed by GUS assay. Hereditas 131, 23-31.
  • SUONIEMI A., ANAMTHAWAT-JONSSON K., ARNA T., SCHULMAN A. H., 1996. Tetrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare) genome. Plant Mol. Biol. 30, 1321-1329.
  • SUONIEMI A., SCHMIDT D., SCHULMAN A. H., 1997. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica 100, 219-230.
  • SUONIEMI A., TANSKANEN J., SCHULMAN A. H., 1998. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699-705.
  • TAKUMI S., MURAI K., MORI N., NAKAMURA C., 1999a. Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene. Theor. Appl. Genet. 98, 947-953.
  • TAKUMI S., MURAI K., MORI N., NAKAMURA C., 1999b. Variation in the maize Ac transposase transcript level and the Ds excision frequency in transgenic wheat callus lines. Genome 42, 1234-1241.
  • TURCOTTE K., SRINIVASAN S., BUREAU T., 2001. Survey of transposable elements from rice genomic sequences. Plant J. 25, 169-179.
  • VERHININ A. V., DRUKA A., ALKHIMOWA A. G., KLEINHOFS A., HESLOP-HARRISON J. S., 2002. LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol. Biol. 49, 1-4.
  • VICIENT C.M., KALENDAR R., SCHULMAN A. H., 2001. Envelope- class retrovirus-like elements are widespread, transcribed and insertionally polymorphic in plants. Genome Res. 11, 2041-2049.
  • WATSON J. D., GILMAN M.,WITKOWSKI J., ZOLLER M., 1992. Movable genes in recombinant DANN. Scientific American Books NY, 175-190.
  • WAUGH R., MCLEAN K., FLAVELL A. J., PEARCE S. R., KUMAR A., THOMAS B. B. T., POWELL W., 1997. Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694.
  • XIONG Y., EIKBUSH T. H., 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353-3362.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv53p325kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.