Preferences help
enabled [disable] Abstract
Number of results
2004 | 53 | 3-4 | 315-323
Article title

Organizacja i funkcja ciałek Cajala

Title variants
Organization and functions of Cajal bodies
Languages of publication
Summary There ismuch interest in recent years in the possible role of different nuclear bodies (NBs) in cellular functions. NBs include the well-characterized Cajal bodies (CBs; or coiled bodies), which were first described in vertebrate neurons by Ramón y Cajal nearly 100 years ago and since then demonstrated in a variety of organisms and cell types, including both animals and plants. Cajal bodies contain C snurposomes with their associated B snurposomes. Many discussions of CB function emphasize their possible involvement in assembly, modification, or storage of RNA processing factors, especially small nucleolar ribonucleoprotein particles (snoRNPs), splicing small nuclear ribonucleoprotein particles (snRNPs), and the U7 snRNP. Moreover, some evidence suggests that CBs play an even wider role in transcription. Taking into account the composition of CBs and the targeting of various transcription and processing factors to CBs, we conclude that theymay be the primary site for assembly of the transcription machinery of the nucleus. The objective of this article is to summarize some aspects of these nuclear bodies, including their proposed roles in cells and in human diseases.
Physical description
  • Zakład Cytogenetyki Molekularnej Instytutu Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Jastrzębiec, Polska
  • Zakład Zachowania się Zwierząt Instytutu Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Jastrzębiec, Polska
  • Zakład Cytogenetyki Molekularnej Instytutu Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Jastrzębiec, Polska
  • ABBOTT J., MARZLUFF W. F., GALL J. G., 1999. The stem loop binding protein (SLBP1) is present in coiled bodies of the Xenopus germinal vesicle. Mol. Biol. Cell 10, 487-499.
  • ANDRADE L. E. C., CHAN E. K. L., RASKA I., PEEBLES C. L., ROOS G., TAN E. M., 1991. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J. Exp. Med. 173, 1407-1419.
  • ANDRADE L. E. C., TAN E. M., CHAN E. K. L., 1993. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Nat. Acad. Sci. USA 90, 1947-1951.
  • BAUER D. W., GALL J. G., 1997. Coiled bodies without coilin. Mol. Biol. Cell 8, 73-82.
  • BERNHARD W., 1969. A new staining procedure for electron microscopical cytology. J. Ultrastruct. Res. 27, 250-265.
  • BUCCI S., GIANI L., MANCINO G., PELLEGRINO M., RAGGHIANTI M., 2001. TAFII70 protein in Cajal bodies of the amphibian germinal vesicle. Genome 44, 1100-1103.
  • CAJAL S. R., 1903. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol. 2, 129221. CAJAL S. R., 1906. The structure and connections of neurons. Nobel Lecture 220-253.
  • CARMO-FONSECA M., PEPPERKOK R., CARVALHO M. T., LAMOND A. I., 1992. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J. Cell Biol. 117, 1-14.
  • CARVALHO T., ALMEIDA F., CALAPEZ A., LAFARGA M., BERCIANO M. T., CARMO-FONSEC A., 1999. The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J. Cell Biol. 147, 715-727.
  • DARZACQ X., JÁDY B. E., VERHEGGEN C., KISS A. M., BERTRAND E., KISS T., 2002. Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746-2756.
  • FREY M. R., MATERA A. G., 1995. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc. Natl. Acad. Sci. USA 92, 5915-5919.
  • FRUGIER T., TIZIANO F. D., CIFUENTES-DIAZ C., MINIOU P., ROBLOT N., DIERICH A., LE MEUR M., MELKI J., 2000. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 9, 849-858.
  • GAGINSKAYA E. R., 1972. The nuclear structures in oocytes of adult birds. II. Protein bodies and the karyosphere. Tsitologiia 14, 568-577.
  • GALL J. G., 1991. Spliceosomes and snurposomes. Science 252, 1499-1500.
  • GALL J. G. 2000. Cajal bodies: the first 100 years. Annu. Rev. Cell Dev. Biol. 16, 273-300.
  • GALL J. G., CALLAN H. G., 1989. The sphere organelle contains small nuclear ribonucleoproteins. Proc. Natl. Acad. Sci. USA 86, 6635-6639.
  • GALL J. G., BELLINI M.,WU Z.,MURPHY C., 1999. Assembly of the Nuclear Transcription and Processing machinery: Cajal Bodies (Coiled Bodies) and Transcriptosomes. Mol. Biol. Cell 10, 4385-4402.
  • HEBERT M. D., MATERA A. G. 2000. Self-association of coilin reveals a common theme in nuclear body localization. Mol. Biol. Cell. 11, 4159-4171.
  • ISAAC C., YANG Y.,MEIER U. T., 1998. Nopp140 functions as amolecular link between the nucleolus and the coiled bodies. J. Cell Biol. 142, 319-329.
  • LAFONTAINE J. G., 1965. A light and electron microscope study of small, spherical nuclear bodies in meristematic cells of Allium cepa, Vicia faba, and Raphanus sativus. J. Cell Biol. 26, 1-17.
  • LAM Y. W., LYON C. E., LAMOND A. I. 2002. Large-scale isolation of Cajal bodies from HeLa cells. Mol. Biol. Cell. 13, 2461-2473.
  • LAMOND A. I., EARNSHAW W. C., 1998. Structure and function in the nucleus. Science 280, 547-553.
  • LOYEZ M., 1906. Recherches sur le devéloppement ovarian des oeufs meroblastiques a vitellus nutritif abondant. Archiv. Anat. Microsc. Morph. Exp. 8, 369-397.
  • LYON C. E., BOHMANN K., SLEEMAN J., LAMOND A. I., 1997. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp. Cell Res. 230, 84-93.
  • MATERA A. G. 1998. Of coiled bodies, gems, and salmon. J. Cell. Biochem. 70, 181-192.
  • MONNERON A., BERNHARD W., 1969. Fine structural organization of the interphase nucleus in some mammalian cells. J.Ultrastruct. Res. 27, 266-288.
  • MORGAN G. T., DOYLE O., MURPHY C., GALL J. G., 2000. RNA polymerase II in Cajal bodies of amphibian oocytes. J. Struct. Biol. 129, 258268.
  • MURPHY C.,WANG Z., ROEDER R. G., GALL J. G., 2002. RNA polymerase III in Cajal bodies and lampbrush chromosomes of the Xenopus oocyte nucleus. Mol. Biol. Cell 13, 3466-3476.
  • NARAYANAN A., SPECKMANN W., TERNS R. M., TERNS M. P., 1999. Role of the Box C/Dmotif in the localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell 10, 2137-2147.
  • OCHS R. L., SMETANA K., 1991. Detection of fibrillarin in nucleolar remnants and the nucleolar matrix. Exp. Cell Res. 197, 183-190.
  • OCHS R. L., STEIN T. W., TAN E. M., 1994. Coiled bodies in the nucleolus of breast cancer cells. J. Cell Sci. 107, 385-399.
  • PAULE M. R., WHITE R. J., 2000. Transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 12831298.
  • PLATANI M., GOLDBERG I., SWEDLOW J. R., LAMOND A. I. 2000. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 151, 1561-1574.
  • PLATANI M., GOLDBERG I., LAMOND A. I., SWEDLOW J. R., 2002. Cajal body dynamics and association with chromatin are ATP-dependent. Nat. Cell Biol. 4, 502-508.
  • RASKA I., OCHS R. L., ANDRADE L. E. C., CHAN E. K. L., BURLINGAME R., PEEBLES C., GRUOL D., TAN E. M., 1990. Association between the nucleolus and the coiled body. J. Struct. Biol. 104, 120-127.
  • RASKA I., ANDRADE L. E. C., OCHS R. L., CHAN E. K. L., CHANG C. M., ROOS G., TAN E. M., 1991. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195, 27-37.
  • REBELO L., ALMEIDA F., RAMOS C., BOHMANN K., LAMOND A. I., CARMO-FONSECA M. 1996. The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol. Biol. Cell. 7, 1137-1151.
  • RICHARD P., DARZACQ X., BERTRAND E., JADY B. E., VERHEGGEN C., KISS T., 2003. A common sequence motif determines the Cajal body-specific localisation of box H/ACA scaRNAs. EMBO J. 22, 4283-4293.
  • SACHARCZUK M., 1998. Analiza chromosomów szczoteczkowych gęsi. Praca magisterska. AP Siedlce.
  • SACHARCZUK M., JASZCZAK K., SADOWSKI B., 2003. Chromosomal NOR activity in mice selected for high and low swim stress-induced analgesia. Behav. Genet. 33, 435-441.
  • SLEEMAN J., LYON C. E., PLATANI M., KREIVI J. P., LAMOND A. I., 1998. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp. Cell Res. 243, 290-304.
  • SLEEMAN J. E., LAMOND A. I., 1999. Nuclear organization of pre-mRNA splicing factors. Curr. Opin. Cell Biol. 11, 372-377.
  • SPECTOR D. L., LARK G., HUANG S., 1992. Differences in snRNP localization between transformed and nontransformed cells.Mol. Biol. Cell 3, 555-569.
  • THIRY M., 1994. Cytochemical and immunocytochemical study of coiled bodies in different cultured cell lines. Chromosoma 103, 268-276.
  • TSVETKOV A., JANTSCH M., WU Z., MURPHY C., GALL J. G., 1992. Transcription on lampbrush chromosome loops in the absence of U2 snRNA. Mol. Biol.Cell 3, 249-261.
  • VERHEGGEN C., LAFONTAINE D. L. J., SAMARSKY D., MOUAIKEL J., BLANCHARD J. M., BORDONNÉ R., BERTRAND E., 2002. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J. 21, 27362745.
  • WU Z., MURPHY C., WU C. H., TSVETKOV A., GALL J. G., 1993. Snurposomes and coiled bodies. Cold Spring Harb. Symp. Quant. Biol. 58, 747-754.
  • YAMADA M., SATO T., SHIMOHATA T., HAYASHI S., IGARASHI S., TSUJI S., TAKAHASHI H. 2001. Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am. J. Pathol. 159, 1785-1795.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.