Preferences help
enabled [disable] Abstract
Number of results
2004 | 53 | 3-4 | 281-293
Article title

Zdrowy i chory "gorset" DNA, czyli medyczne aspekty epigenetyki

Title variants
Healthy and sick DNA "corset", or medical aspects of epigenetics
Languages of publication
Summary There is now generally accepted that the program for development and normal gene expression and repression during life are under epigenetic control. Epigenetic modifications are very important and critical for gene regulation processes. Several distinct syndromes, numerous complex diseases such degenerative and age-related diseases and cancers are caused by local epigenetic alterations of the chromatin structure. Understanding of the process of epigenetic reprogramming in development is important for studies of therapeutic cloning and the clinical application of stem cells. Mechanisms that regulate genomic plasticity and the state of totipotency are being unravelled and the gained knowledge will enhance our ability to manipulate stem cells for therapeutic purposes in many human diseases. Similarities between embryonal and cancer cells suggest new potential therapies for the treatment of cancer based on epigenetic strategies. In the future, personalized medicine provided as the result of epigenetic profiling of critical genes may be a more effective method of treating patients than the current generic approach. The methylation of DNA has the general characteristics needed for an ideal diagnostic testing technology, applicable to most common diseases. Particularly, the methylation-based strategy would be the perfect tool for creating a comprehensive cancer-management system concerning early detection (asymptomatic people), as well as molecular classification, cancer resistance, pharmacogenetic testing and monitoring.
Physical description
  • Zakład Genetyki Medycznej Instytut Matki i Dziecka, Kasprzaka 17A, 01-211 Warszawa, Polska
  • BLOUNT B. C.,MACK M. M.,WEHR C.M.,MACGREGOR J. T., HIATT R. A., WANG G., WICKRAMASINGHE S. N., EVERSON R. B., AMES B. N. 1997. Folate deficiency causes uracil misincorporation into human DNA andchromosome breakage: implication for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA 94, 3290-3295.
  • BOURC'HIS D., LE BOURHIS D., PATIN D., NIVELEAU A., COMIZZOLI P., RENARD J. P., VIEGAS-PEQUIGNOT E., 2001. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 154-1546.
  • FENECH M., 2001. Recommended dietary allowances for genomic stablity. Mutation Res. 480-481, 51-54.
  • FERGUSON-SMITH A, SURANI M. A., 2001. Imprinting and the epigenetic asymmetry between parental genomes. Science 293, 1086-1089.
  • INOUE K., KOHDA T., LEE J., OGONUKI N., MOCHIDA K., NOGUCHI Y., TANEMURA K., KANEKO-ISHINO T., ISHINO F., OGURA A.., 2002. Faithful expression of imprinted genes in cloned mice. Science 295, 297.
  • KANG Y.K., KOO D. B., PARK J. S., CHOI Y. H., CHUNG A. S., LEE K. K.,HAN Y. M., 2001. Aberrant methylation of donor genome in cloned bovine embryos. Nature Genet. 28, 173-177.
  • LI E., 2002. Chromatinmodification and epigenetic reprogramming in mammalian development. Nature 3, 662-673.
  • NATIONAL INSTITUTESOFHEALTH, 2001. Stem Cells: Scientific Progress and Future Research Directions. Department of Health and Human Services.
  • OLEK S.,MAIER S., OLEK K., OLEK A., 2003. Digitizing Molecular Diagnostics: Current and Future Applications of Epigenome Technology. [W:] The Epigenome. Molecular Hide and Seek. BECK S., OLEK A. (red.). WILEY-VCH GmbH & Co. KGaA, Germany, 153-173.
  • OLIGNY L. L., 2001. Cancer and epigenesis an overview. Ann. Diagn. Paediatr. Pathol. 5, 27-30.
  • PLASS C., SOLOWAY P. D., 2002. DNA methylation, imprinting and cancer. Eur. J. Hum. Genet. 10, 6-16.
  • RATAJCZAK M., OSUCHOWSKA Z., KAWIAK J., 2003. Komórki macierzyste. Post. Biol. Kom. 30, Suplement 21.
  • REIK W., WALTER J., 2001. Genomic imprinting: parental influence of the genome. Nature Rev. Genet. 2, 21-32.
  • REIK A., GREGORY P. D., URNOV F. D., 2002. Biotechnologies and therapeutics: chromatin as a target. Curr. Opin. Genet. Dev. 12,233-242.
  • RIDEOUT W.M. 3rd,HOCHEDLINGER K.,KYBA M.,DALEY G. Q., JAENISCH R. M., 2002. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17-27.
  • SURANI M. A. 2001. Reprogramming of genome function through epigenetic inheritance. Nature 414, 122-128.
  • TADA M., TAKAHAMA Y., ABE K., NAKATSUJI N., TADA T., 2001. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553-1558.
  • WAKAYAMA T., SHINAKAI Y., TAMASHIRO K. L., NIIDA H., BLANCHARD D. C., BLANCHARD R. J., OGURA A., TANEMURA K., TACHIBANA M., PERRY A. C., COLGAN D. F., MOMBAERTS P., YANAGIMACHI R., 2000. Clonning of mice to six generation. Nature 407, 318-319.
  • WAKAYAMA T., TABAR V., RODRIGUEZ I., PERRY A. C., STUDER L., MOMBAERTS P., 2001. Differentiation of embryonic stem cells lines generated from adult somatic cells by nuclear transfer. Science 292, 740-743.
  • WALTER J., PAULSEN M., 2003. Genetic Trouble: Human diseases Caused by Epimutations. [W:] The Epigenome. Molecular Hide and Seek. BECK S., OLEK A. (red.). WILEY-VCH GmbH & Co. KGaA, Germany, 153-173.
  • WILMUT I., SCHNIEKE A. E.,MCWHIR J.,KIND A. J., CAMPBELL K. H., 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.