Preferences help
enabled [disable] Abstract
Number of results
2004 | 53 | 2 | 207-217
Article title

Allelopatia - nowe interpretacje oddziaływań pomiędzy roślinami

Title variants
Allelopathy - new interpretations of plant - plant interactions
Languages of publication
Summary Allelopathy denotes biochemical interactions among all types of plants and microorganisms. Allelochemicals occur in the majority of secondary plant products and belong to terpenoids, phenolic compounds, phenylpropane derivatives, flavonoids, organic cyanides, long-chain fatty acids. In fields, allelopathy involves a complex of compounds, which complicates investigations of underlying mechanisms of its appearance. There is no single physiological function controlled by allelochemicals. The action of allelochemicals is diverse and affects a large number of physiological functions and biochemical reactions eg.: seed germination, cell division, cell elongation, membrane permeability and ion uptake. Significant effects of allelochemicals on photosynthesis and respiration have been also observed. The reduction of crop yields by weed competition is aggravated by the allelopathic effect of weeds on crop. Crop plants may inhibit their owngrowth and reduce the yield of subsequent crops due to the so called soil sickness. Crop rotation helps to cures soil sickness only when the subsequent crop is not affected by the accumulated allelochemicals of the previous crop or when they have been detoxified by soil microorganisms. Allelopatic weed control with crop plants has long been practised by farmers and horticulturists. The challenge is twofold: tominimize the negative impact of allelochemicals on crop growth and yield and to exploit allelopathic mechanisms for pest control and crop growth regulation strategies. Allelochemicals in new crop cultivars may provide naturally occurring pesticides that can limit or suppress weeds as well as prevent insect and nematode attack and damage. Biotechnology resources for the production of herbicide-resistant crops could then be channeled into the engineering of other desired crops qualities. Allelochemicals may furnish an entirely new generation of naturally produced weed-controlling compounds, replacing synthetic herbicides and other pesticides with nonacumulatting easy-degradable substances.
Physical description
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, SGGW, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, SGGW, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, SGGW, Nowoursynowska 159, 02-776 Warszawa, Polska
  • ALDRICH R. J., 1997. Allelopatia w kierowaniu odchwaszczeniem. [W:] Ekologia chwastów w roślinach uprawnych. Podstawy zwalczania chwastów. Opole, 207-231.
  • ASTARITA L. V., FERREIRA A. G., BERGONCI J. I., 1996. Mimosa bimucronata: Allelopathy and osmotic stress. Allelopathy J. 3, 43-50.
  • BAIS H. P., VEPACHEDU R., GILROY S., CALLAWAY R., VIVANCO J. M., 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377-1380.
  • BALERONI C. R. S., FERRARESE M. L. L., SOUZA N. E., FERRARESE-FILHO O., 2000. Lipid accumulation during canola seed germination in response to cinnamic acid derivatives. Biol. Plant. 43, 313-316.
  • BARNES J. P., PUTMAN A. R., 1987. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13, 889-905.
  • BARTOSZ G., 1997. Oxidative stress in plants. Acta Physiol. Plant.19, 47-64.
  • BERTIN C., YANG X.,WESTON L. A., 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256, 67-83.
  • BHOWMIK P. C., INDERJIT 2003. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 22, 661-671.
  • BHOWMIK P. C, O'TOOLE B. M., ANDALORO J., 1992. Effects of nicosulfuron on quackgrass (Elytrigia repens) control in corn. Weed Sci. 6, 52-56.
  • BIAŁY Z., OLESZEK W., LEWIS J., FENWICK G. R., 1990. Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 129, 277-281.
  • BIRKETT M. A., CHAMBERLAIN K., HOOPER A. M., PICKETT J. A., 2001. Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant Soil 232, 31-39.
  • BLUM U., GERIG T. M., WORSHAM A. D., KING L. D., 1993. Modification of the allelopatic effects of p-kumaric acid on morning-glory seedlings biomass by glucose,methionine and nitrate. J. Chem. Ecol. 19, 2791-2811.
  • BOGATEK R., ORACZ K., BAILLY C., COME D., CORBINEAU F., GAWROŃSKI S. W., 2002. Induction of oxidative stress by sunflower allelopathics in germinating mustard (Sinapis alba L.) seeds. Third World Congress on Allelopathy - Abstracts. FUJITA Y., HIRADATE S., ARAYA H. (red.). Tsukuba, Japan, 158.
  • BURGOS N. R., TALBERT R. E., KIM K. S., KUK Y. I., 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J. Chem. Ecol. 30, 671-689.
  • CAMACHO-CRISTÓBAL J. J., ANNZELLOTTI D., GONZÁLEZFONTEZ A., 2002. Changes in phenolic metabolism of tabbaco plants during short term boron deficiency. Plant. Biol. Biochem. 40, 997-1002.
  • CHEEMA Z. A., KHALIQ A., 2000. Use of sorgum allelopathic properties to controlweeds in irrigatedwheat in a semi arid region of Punjab. Agric. Ecosys. Environ. 79, 105-112.
  • CRUZ-ORTEGA R., ANAYA A. L., RAMOS L., 1988. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol. 14, 71-86.
  • CRUZ-ORTEGA R., AYALA-CORDERO G., ANAYA A. L., 2002. Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: effects on roots of bean, maize, and tomato. Physiol. Plant. 116, 20-27.
  • DUKE S. O., DAYAN F. E., ROMAGNI J. G., RIMANDO A. M., 2000. Natural products as sources of herbicides: current status and future trends. Weed Res. 40, 90-111.
  • ESTABROOK E. M., YODER J. I., 1998. Plant-plant communications: rhizosphere signalling between parasitic angiosperms and their hosts. Plant. Physiol. 116, 1-7.
  • FUJIta K-I., KUBO I., 2003. Synergism of polygodial and trans-cinnamonic acid on inhibition of root elongation in lettuce seedlings growth bioassays. J. Chem. Ecol. 29, 2253-2262.
  • HEJL A. M.,KOSTER K. L., 2004. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30, 453-472.
  • INDERJIT, DUKE S. O., 2003. Ecophysiological aspects of allelopathy. Planta 217, 529-539.
  • INDERJIT, CALLAWAY R. M., 2003. Experimental designs for the study of allelopathy. Plant Soil 256, 1-11.
  • INDERJIT, STREIBIG J. C., OLOFSDOTTER M., 2002. Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol. Plant. 114, 422-428.
  • KATO-NAGUCHI H., INO T., 2003. Rice seedlings release momilactone B into environment. Phytochemistry 63, 551-554.
  • KATO-Nauchi H., INO T., SATO N., YAMAMURA S. 2002. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant. 115, 401-405.
  • KĘPCZYŃSKI J., KĘPCZYŃSKA E., 2000. Znaczenie etylenu w ustępowaniu spoczynku i kiełkowaniu nasion. Kosmos 49, 161-168.
  • KING J., (red.) 2003. Nie na moim podwórku. [W:] Sekretne życie roślin. Prószyński i S-ka S.A.,Warszawa, 200-212.
  • KUPIDŁOWSKA E., KOWALEC M., SUŁKOWSKI G., ZOBEL A. M., 1994. The effect of coumarins on the root elongation and ultrastructure of meristematic cell protoplast. Ann. Bot. 73, 525-530.
  • LABÓN N. C., ALÍAS GALLEGO J. C., SOSA DIAZ T., ESCUDERO GARCÍA J. C., 2002. Allalopathic potential of Cistus ladanifer chemicals in response variations of light and temperature. Chemoecology 12, 139-145.
  • MACIAS F. A., 1995. Allelopathy in search for natural herbicide models. [W:] Allelopathy: Organisms, Processes, and Applications. INDERJIT, DAKSHINI KMM, EINHELLING F.A. (red.). American Chemical Society, Washington, DC, 310-329.
  • MASSARDO F., ZUNIGA G. E., PEREZ L. M., CORCUERA L. J. 1994. Effects of hydroxamic acids on electron transport and their cellular location in corn. Phytochemistry 35, 873-876.
  • MATVIENKO M., WOJTOWICZ A., WROBEL R., Jamison D., GOLDWASSER Y., YODER J. I., 2001. Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinines. Plant J. 25, 375-387.
  • MITTLER R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410.
  • MOLISCH H., 1937. Der einfluss einer pflanze auf die andere-allelopathie. Fisher, Jena.
  • NIMBAL C. I., PEDERSEN J. F., YERKES C. N.,WESTON L. A. & WELLER S. C., 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44, 1343-1347.
  • OHNO T, DOOLAN K. L., 2001. Effects of red clover decomposition on phytotoxicity to wild mustard seedling growth. Appl. Soil Ecol. 16, 187-192.
  • OHNO T., DOOLAN K., ZIBILSKE L. M., LIEBMAN M., GALLANDT E. R., BERUBE C., 2000. Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric. Ecosys. Environ. 78, 187-192.
  • OLESZEK W., 1996. Allelopatia - rys historyczny, definicja, nazewnictwo. [W:] Teoretyczne i praktyczne aspekty allelopatii. Materiały Konferencyjne IUNG, Puławy, 5-15.
  • ORACZ K., BOGATEK R., BAILLY C., COME D., CORBINEAU F., GAWROŃSKI S. W., 2003. Allelopatic potential of sunflower. IV. Activation of antyoxidative system in germinating mustard (Sinapis alba L) seeds. Acta Physiol. Plant. Suppl. 25, 105.
  • RASMUSSEN J. A.,HEJL A. M., EINHELLING F. A., THOMAS J. A., 1992. Sorgoleone from root exudates inhibits mitochondrial functions. J. Chem. Ecol. 18, 197-207.
  • RIDENOUR W.M., CALLAWAY R. M., 2001. The relative importance of allelopathy in interference: the effects of an invasive weed on a native buchgrass. Oecologia 126, 444-450.
  • RIMANDO A. M., DAYAN F. E., CZARNOTA M. A., WESTON L. A, DUKE S. O., 1998. A new photosystem II electron transfer inhibitor from Sorgum bicolour. J. Nat. Prod. 61, 927-930.
  • ROMERO-ROMERO T., SANCHEZ-NIETO S., ANAYA A.L., CRUZ-ORTEGA R., 2002. A comparative study between an allelopathic and water stress in Lycopersicon esculentum roots. Materiały konferencyjne ThirdWorld Congress on Allelopathy, Tsukuba, Japan, 125.
  • SANSWIK R. M. 1981. Electrogenic ion pumps. Annu. Rev. Plant Physiol. 32, 267-289.
  • SAXENA S., PANDEY A. K., 2001. Microbal metabolites as eco-friendly agrochemicals for the next millennium. Appl. Microbiol. Biotechnol. 55, 395-403.
  • SERT M. A., FERRARESI M. L. L., BERNADELLI Y. R., KELMER-BRACHT A., ISHIi-IWAMOTO E. L., 1997. Effects of ferulic acid on L-malate oxidation in isolated soybean mitochondria. Biol. Plant. 40, 342-350.
  • SINGH H. P., BATISH D. R. and KOHLI R. K., 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci. 22, 239-311.
  • STURZ A. V., CHRISTIE B. R., 2003. Beneficialmicrobal allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till. Res. 72, 107-123.
  • VOKOU D., DOUVLI P., BLIONIS G. J., HALLEY J. M., 2003. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29, 2282-2301.
  • VYVYAN J. R., 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58, 1631-1646.
  • WESTON L. A.,DUKE S. O., 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22, 367-389.
  • WÓJCIK-WÓJTKOWIAK D., POLITYCKA B. WEYMANKACZMARKOWA W., 1998. Allelopatia. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań.
  • WU H., PRATLEY J., LEMERLE D., HAIG T., 1999. Crop cultivars with allelophatic capability. Weed Res. 39, 171-180.
  • YAMADA K., ANAI T., HASEGAWA K., 1995. Lepidimoide, an allelopathic substance in the exudaces from germinated seeds. Phytochemistry 39, 1031- 1032.
  • YAMAMOTO T., YOKOTANI-TORNITA K., KOSEMURA S., YAMAMURA S., YAMADA K.,HASEGAWA K., 1999. Allelopathic substance exuded from a serious weed, germinating barnyard grass (Echinochloa crus-galli L.) roots. Plant Growth Reg. 18, 65-67.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.