Preferences help
enabled [disable] Abstract
Number of results
2004 | 53 | 2 | 123-131
Article title

Hipotetyczna rola autokatalitycznych właściwości kwasów nukleinowych w procesie biogenezy

Title variants
Hypotetical role of autocatalytic properties of nucleic acids in biogenesis
Languages of publication
Summary Ribozymes are catalytic RNA molecules. In this article their various types and activities in contrasts with corresponding DNA molecules are briefly characterized. The revolutionary discovery of the autocatalytic properties of nucleic acids by theNobel Prizewinners, Sidney Altman, Thomas R. CECH and their co-workers, led to the hypothesis of RNA world and to speculation on the role of RNA in the origin of life and the early stages of its evolution on Earth. The possible role of the autocatalytic properties of nucleic acids in prebiotic evolution is, therefore, discussed.
Physical description
  • Wydział Chemii Uniwersytetu Warszawskiego Instytut Biologii Doświadczalnej im. Marcelego Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Zakład Biochemii Komórki Instytut Biologii Doświadczalnej im. Marcelego Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • ANTOSZCZYK S., NAWROT B., 2003. Rybozymywmedycynie. Biotech. 2, 140-152.
  • BARTEL D. P., UNRAU P. J., 1999. Constructing an RNA world. Trends Cell Biol. 9, M9-M13.
  • BEVILACQUA P. C., 2003. Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42, 2259-2265.
  • BREAKER R. R., JOYCE G. F. , 1994. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223-229.
  • BURKE J. M., 2002. Hairpin and hammerhead ribozymes: how different are they? Biochem. Soc. Trans. 30, 1115-1118.
  • CAIRNS-SMITH A. G., 1966. The origin of life and the nature of the primitive gene. J. Theor. Biol. 10, 53-88.
  • CECH t. R., 2002. Ribozymes, the first 20 years. Biochem. Soc. Trans. 30, 1162-1166.
  • CECH T. R., HERSCHLAG D., PICCIRILLI J. A., PYLE A. M., 1992. RNA catalysis by a group I ribozyme. Developing amodel for transition state stabilization. J. Biol. Chem. 267, 17479-17482.
  • CECH T. R., Bass B. Z., 1986. Biological catalysis by RNA. Annu. Rev. Biochem. 55, 599-629.
  • CHACHULSKA A. M., 1992. Ribozymes - catalytic RNA molecules. Postepy Bioch. 38, 64-74.
  • COBALEDA C., SANCHEZ-GARCIA I., 2001. RNase P: from biological function to biotechnological applications. Trends Biotech. 10, 406-411.
  • CRICK F. , 1992. Istota i pochodzenie życia. Państwowy Instytut Wydawniczy, Warszawa.
  • DEAMER D.W., FLEISCHAKER G. R., 1994. Origins of life - the central concepts. Jones and Barlett, England, Boston.
  • DOUDNA J. A., CECH T., 2002. The chemical repertoire of natural ribozymes. Nature 418, 222-228.
  • DOUDNA J. A., RATH V. L., 2002. Structure and function of the eukaryotic ribosome: the next frontier. Cell 109, 153-156.
  • EMILSSON G. M., NAKAMURA S., ROTH A., BREAKER R. R., 2003. Ribozyme speed limits. RNA. 9, 907-918.
  • GIBSON T. J., LAMOND A., 1990. Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J. Mol. Evol. 30, 7-15.
  • GUTHRIE C., 1991. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253, 157-163.
  • GUERIER-TAKADA C., GARDINER K., MARSH T., PACE N., ALTMAN S., 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857.
  • HAMPEL A., COWAN J. A., 1997. A uniquemechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem. Biol. 4, 513-517.
  • HERSCHLAG D., CECH T. R., 1990. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry 29, 10172-10180.
  • HÜBER C.,WÄCHTERSHÄUSER G., 1998. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science 281, 670-672.
  • JOYCE G. F., 2002. The antiquity of RNA-based evolution. Nature 418, 214-221.
  • KNIGHT R. D., LANDWEBER L.F., 2000. The early evolution of the genetic code. Cell 101, 569-572.
  • KOSEKI S., TANABE T., TANI K, ASANO S., SHIODA T., NAGAI Y., SHIMADA T, OHKAWA J., TAIRA K., 1999. Factors governing the activity in vivo of ribozymes transcribed by RNA polymerase III. J. Virology 73, 1868-1877.
  • KRUGER K., GRABOWSKI P. J., ZAUG A. J., SAND J., GOTTSCHLINGD. E., CECH T. R. , 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147-157.
  • LONG D. M.,UHLENBECK O. C., 1993. Self-cleaving catalytic RNA. FASEB J. 7, 25-30.
  • MARKLEY J. C., GODDE F., SIGURDSSON S. T. , 2001. Identification and characterization of a divalent metal ion-dependent cleavage site in the hammerhead ribozyme. Biochemistry 40, 13849-13856.
  • MAYR E., 2001. What Evolution is? Basic Books, New York.
  • McKAY D. B., FLAHERTY K. M., PLEY H. W., 1994. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68-74.
  • MILLER S. L., UREY H. C., 1959. Organic compound synthesis on the primitive earth. Science 130, 249-255.
  • MILLER S. L., SSCOPF J. W., LAZCANO A., 1997. Oparin's 'Origin of Life': sixty years later. J Mol Evol 44: 351-353.
  • NAWROT B., 2002. Catalytic DNA - deoxyribozymes. Postępy Biochem. 48, 20-33.
  • NISSEN P., HANSEN J., BAN N., MOORE P. B., STEITZ T. A., 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930 NOMURA T., IHIHAMA A. , 1988. A novel function of RNase P from Escherichia coli: processing of a suppressor tRNA precursor. EMBO J. 11, 3539-3545.
  • OHNISHI K., HOKARI S., SHUTOU H., OHSHIMA M., FURUICHI N., GODA M., 2002. Origin of most primitive mRNAs and genetic codes via interactions between primitive tRNA ribozymes. Genome Inform. Ser. Workshop Genome Inform. 13, 71-81.
  • ORGEL L. E., 2003. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 33, 211-218.
  • RIDDIHOUGH G., 2002. The other RNA world (in introduction to special issue). Science 296, 1259.
  • ROBERTSON H. D., ALTMAN S., SMITH J. D., 1972. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J. Biol. Chem. 247, 5243-5251.
  • ROLA M, KUŹMA J., 2001. Use of hammerhead ribozymes as antiviral tools. Postępy Biochem. 47, 282-291.
  • ROTH A., BREAKER R. R., 1998. An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl. Acad. Sci. USA 95, 6027-6031.
  • SADOWSKA J., 1992. Ribonuclease P - an example of catalytic RNA activity. Postępy Biochem 38: 112-122.
  • SANTORO S. W., JOYCE G. F., 1997. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262-4266.
  • SCHIMMEL P., KELLEY S. O., 2000. Exiting an RNA world. Nat. Struct. Biol. 7, 5-7.
  • SCHURER H., LANG K., SCHUSTER J., MORL M., 2002. A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Res. 30, e56.
  • SIELIWANOWICZ B., 1988. Splicing of nuclear messenger RNA precursors. Postępy Biochem. 34, 351-360.
  • SHARP P. A., 1985. On the origin of RNA splicing and introns. Cell 42, 397-400.
  • SHOPF J. W., 2002. Kolebka życia: O narodzinach i najstarszych śladach życia na Ziemi. PWN, Warszawa.
  • STEITZ T. A., STEITZ J. A., 1993, A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498-6502.
  • STEITZ T. A.,MOORE P. B., 2003. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28, 411-418.
  • TAYLOR M. M., SAMSON W. K., 2002. Ribozyme compromise of adrenomedullinmRNA reveals a physiological role in the regulation of water intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1739-R1745.
  • TURNER R., 2002. RNA (Nature insight). Nature 418, 213.
  • ZAUG A. S., CECH T. R., 1986. The interesing sequence RNA of Tetrahymena is an enzyme. Science 23, 470-475.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.