Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 53 | 2 | 113-122

Article title

Mikrodomeny błony komórkowej miejscem zapoczątkowania szlaków sygnałowych przez immunoreceptory

Content

Title variants

EN
Plasma membrane rafts as centers for signal transduction by immunoreceptors

Languages of publication

PL EN

Abstracts

EN
Summary Sphingolipids and cholesterol of the plasma membrane self-organize into microdomains named rafts. They are 30-50 nm dynamic lipid assemblies that facilitate local accumulation of GPI-anchored proteins and Src family protein tyrosine kinases in their outer and inner leaflet, respectively. It has been demonstrated in the last five years that immunoreceptors, including TCR, BCR and Fc receptors, associate with rafts upon binding of their polyvalent ligands. Within rafts, tyrosine residues of the receptor signaling sequence ITAM are phosphorylated by kinases of the Src family, being convert simultaneously into docking sites for Syk and Zap70 tyrosine kinases. The joint activity of the Src and Syk/Zap70 families of tyrosine kinases triggers signaling cascades leading eventually to proper responses of cells. An important feature of this process is a fusion of rafts of various composition bringing together molecules required for formation of signaling complexes at activated immunoreceptors.

Keywords

Journal

Year

Volume

53

Issue

2

Pages

113-122

Physical description

Dates

published
2004

Contributors

  • Zakład Biologii Komórki Instytut Biologii Doświadczalnej PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Zakład Biologii Komórki Instytut Biologii Doświadczalnej PAN, Pasteura 3, 02-093 Warszawa, Polska

References

  • AHMED S. N., BROWN D. A., LONDON E., 1997. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944-10953.
  • ALONSO M. A., MILLAN J., 2001. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114, 3957-3985.
  • AMAN M. J., TOSELLO-TRAMPONT A. -C., RRVICHANDRAN K., 2001. FcRIIB1/SHIP-mediated inhibitory signaling in B cells involves lipid rafts. J. Biol. Chem. 276, 46371-46378.
  • ANDERSON R. G. W., 1998. The caveolaemembrane system. Ann. Rev. Biochem. 67, 199-225.
  • ANDERSON R. G. W., JCOBSON K., 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821-1825.
  • BOCK J., GULBINS E., 2003. The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett. 534, 169-174.
  • BRDICKA T., PAVLISTOVA D., LEO A., BRUYNS E.,KORINEK V., ANGELISOVA P., SCHERER J., SHEVCHENKO A., HILGERT I., CERNY J, DRBAL K., KURAMITSU Y., KORNACKER B., HOREJSI V., SCRAVEN B., 2001. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adapter protein, binds the protein tyrosine kinase Csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591-1604.
  • BROWN R. E., 1998. Sphingolipid organization in biomembranes: what physical studies of modelmembranes reveal. J. Cell Sci. 111, 1-9.
  • BROWN D. A., LONDON E., 1997. Structure of detergent- resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240, 1-7.
  • BROWN D. A., ROSE J. K., 1992 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533-544.
  • FIELD K. A., HOLOWKA D., BAIRD B., 1995. FcRI-mediated recruitment of p53/56 lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 92, 9201-9205.
  • FIELD K. A., HOLOWKA D., BAIRD B., 1997. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272, 4276-4280.
  • FRIEDRICHSON T., KURZCHALIA T. V., 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802-805.
  • FRIDRIKSSON E. K., SHIPKOVA P. A., SHEETS E. D., HOLOWKA D., BAIRD B., MCLAFFERTY F. W., 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolutionmass spectrometry. Biochemistry 38, 8056-8063.
  • GOŁĄB J., JAKÓBISIAK M., LASEK W., 2002. Immunologia. Wydawnictwo Naukowe PWN.
  • HARDER T., KUHN M., 2000. Selective accumulation of raft-associatedmembrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 151, 199-207.
  • JACOBSON K., SHEETS E. D., SIMSON R., 1995. Revisiting the fluid mosaic model of membranes. Science 268, 1441-1442.
  • JANES P. W., LEY S. C., MAGEE A. I., 1999. Aggregation of lipid rafts accompanies signaling via T cell antigen receptor. J. Cell Biol. 147, 447-461.
  • KABOURIDIS P. S.,MAGEE A. I., LEY S. C., 1997. S-acylation of LCK protein tyrosine kinas is essential for its signaling function in T lymphocytes. EMBO J. 16, 4983-4998.
  • KILSDONK E. P. C., YANCEY P. G., STOUDT G. W., WAN BANGERTER F., JOHNSON W. J. PHILIPS M. C. ROTHBLAT G. H., 1995 Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250-17256.
  • KORZENIOWSKI M., KWIATKOWSKA K., SOBOTA A., 2003. Insight into the association of FcγRIIA and TCR with detergent-resistant membrane domains: isolation of the domains in detergent-free density gradients facilitates membrane fragment reconstitution. Biochemistry 42, 5358-5367.
  • KWIATKOWSKA K., SOBOTA A., 1999. Signaling pathways in phagocytosis. BioEssays 21, 422-431.
  • KWIATKOWSKA K., SOBOTA A., 2001. The clustered Fc receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol. 31, 989-998.
  • KWIATKOWSKA K., FREY J., SOBOTA A., 2003. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J. Cell Sci. 116, 537-550.
  • MONTIXI C., LANGLET C., BERNARD A.-M., THIMONIER J., DUBOIS C., WURBEL M.-A., CHAUVIN J.-P., PIERRES M., HE H.-T., 1998. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334-5348.
  • PIKE L. J., 2003. Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655-667.
  • PIKE L. J., HAN X., CHUNG K.-N., GROSS R. W., 2002. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41, 2075-2088.
  • PRALLE A., KELLER P., FLORIN K., SIMONS K., HORBER J. K. H., 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997-1007.
  • SCHEIFFELE P. ROTH M. G., SIMONS K., 1997. Interaction of influenza virus haemagglutinin with sphingolipid- cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501-5508.
  • SHEETS E. D., LEE G. M., SIMONS K., JCOBSON K., 1997. Transient confinement of a glycosylphosphatidylinositol- anchored protein in the plasma membrane. Biochemistry 36, 12449-12458.
  • SHEETS E. D., HOLOWKA D., BAIRD B., 1999. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent- resistant membranes. J. Cell Biol. 145, 877-887.
  • SHENOY-SCARIA A. M., TIMSON GAUEN L. K., KWONG J., SHAW A. S., LUBLIN D .M., 1993. Palmitylation of an amino-terminal cysteinemotif of protein tyrosine kinase p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol. Cell. Biol. 13, 6385-6392.
  • SIMONS K., TOOMRE D., 2000. Functional rafts in cell membrane. Nature 387, 569-572.
  • SIMONS K., EHEHALT R., 2002. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597-603.
  • SINGER S. J., NICOLSON G. L., 1972. The fluid mosaic model of the structure of cellmembrane. Science 175, 720-731.
  • STAUFFER T., MEYER T., 1997. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139, 1447-1454.
  • STRZELECKA-KILISZEK A., KORZENIOWSKI M., KWIATKOWSKA K., MROZINSKA K., SOBOTA A., 2004. Activated FcγRII and signaling molecules revealed in rafts by ultrastructural observations of plasma membrane sheets. Mol. Membr. Biol., w druku.
  • STULNIG T. M., BERGER M., SIGMUND T., RAEDERSTORFF D., STOCKINGER H., WALDHAUSL W., 1998. Polyunsaturated fatty acids inhibit T cellsignal transduction by modification of detergent-insoluble membrane domains. J. Cell Biol. 143, 637-644.
  • VA'T HOF W., RESH M. D., 1997. Rapid plasmamembrane anchoring of newly synthesized p59fyn: selective requirement for NH2-terminalmyristoylation and palmitoylation at cysteine-3. J. Cell Biol. 136, 1023-1035.
  • VIOLA A., SCHROEDER S., SAKAKIBARA Y., LANZAVECCHIA A., 1999. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680-682.
  • WILSON B. S., PFEIFFER J. R., OLIVIER J. M., 2000. Observing FcεRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131-1142.
  • WILSON B. S., PFEIFFER J. R., SURVILADZE Z., GAUDET E. A., OLIVIER J. M., 2001. High resolution mapping of mast cells membranes reveals primary and secondary domains of FcεRI and LAT. J. Cell Biol. 154, 645-658.
  • XAVIER R., BRENNAN T., LI Q., MCCKORMACK C., SEED B., 1998. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723-732.
  • ZACHARIAS D. A., VIOLIN J. D., NEWTON A. C., TSIEN R. Y., 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916.
  • ZAJCHOWSKI L. D., ROBBINS S. M., 2002. Lipid rafts and little caves. Eur. J. Biochem. 269, 737-752.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv53p113kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.